
Hadronic Cross Sections at BESIII

June 4, 2017 | Christoph Florian Redmer

First Workshop of the Muon g-2 Theory Initiative

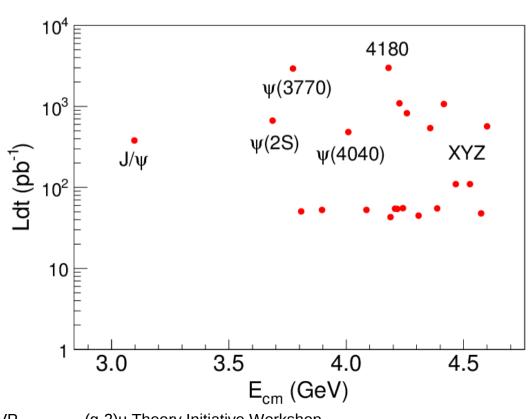
BESIII at BEPCII

NIM A614 (2010) 345

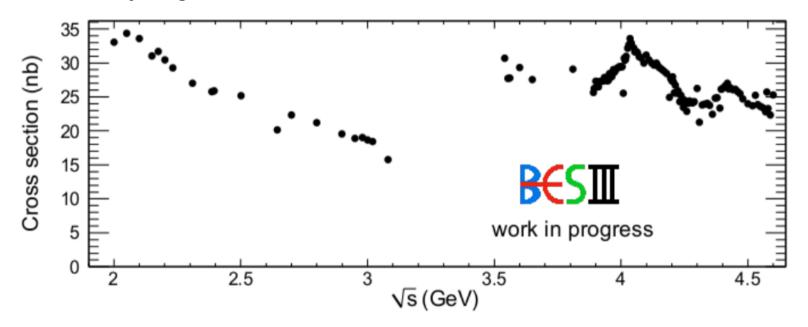
- Main Drift Chamber (MDC)
 - $\sigma(p)/p = 0.5\%$
 - $\sigma_{dE/dx} = 6.0\%$
- Superconducting Magnet
 - 1 T magnetic field

- Time-of-flight system (TOF)
 - $\sigma(t) = 90ps$ (barrel)
 - $\sigma(t) = 110ps$ (endcap)
- Muon Chambers
 - RPC in flux return yoke

- EMC
 - 6240 CsI(TI) crystals
 - $\sigma(E)/E = 2.5\%$
 - $\sigma_{z,\Phi}(E) = 0.5 0.7 \text{ cm}$


BESIII at BEPCII

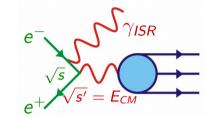
- Large data sets for
 - Charmonium spectroscopy
 - Charm physics
 - Light hadrons
 - τ and R-scan


- Operated at BEPCII collider
 - $2.0 \le \sqrt{s} \; [GeV] \le 4.6$
 - Design luminosity achieved

$$\mathcal{L} = 1.0 \times 10^{33} \text{cm}^{-2} \text{s}^{-1} \text{ at } \psi(3770)$$

Scan Experiments

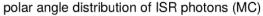
- Line-shape scans in the charmonium and XYZ region
- R-Scan
 - From 2.0 GeV to 4.6 GeV
 - About 150 scan points
 - 3% accuracy targeted

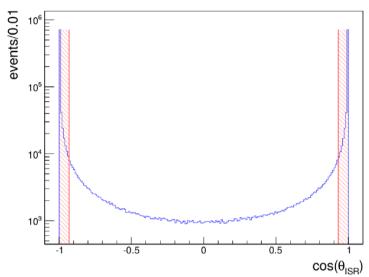


- Scan around χ_{c1} resonance (data taking ended May 31)
 - JPC = 1++
 - 2-photon production

JG|U

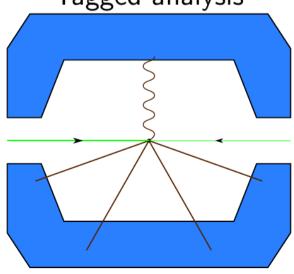
Initial State Radiation

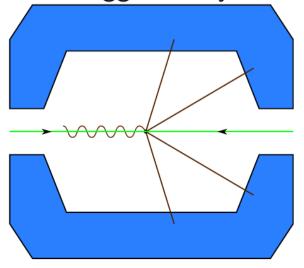

Reduces effective CMS energy



Radiator function relates to non-radiative process

- \blacksquare Emission of ISR suppressed by $\frac{\alpha}{\pi}$
- Large integrated luminosity needed for precision studies
 - lacktriangle Studies presented in the following based on 2.93 fb⁻¹ at $\psi(3770)$


Measurement Strategy



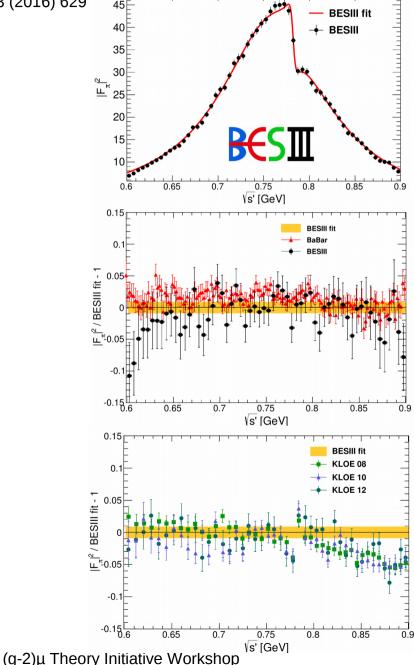
- Detect hadronic system
- ISR photon detected
 - Acceptance from $\pi^+\pi^-$ threshold
 - Large background contamination at high $\sqrt{s'}$
- ISR photon undetected
 - High statistics
 - Acceptance for $\sqrt{s'} > 1 \text{ GeV}$
 - Small background contamination

Tagged analysis

Untagged analysis

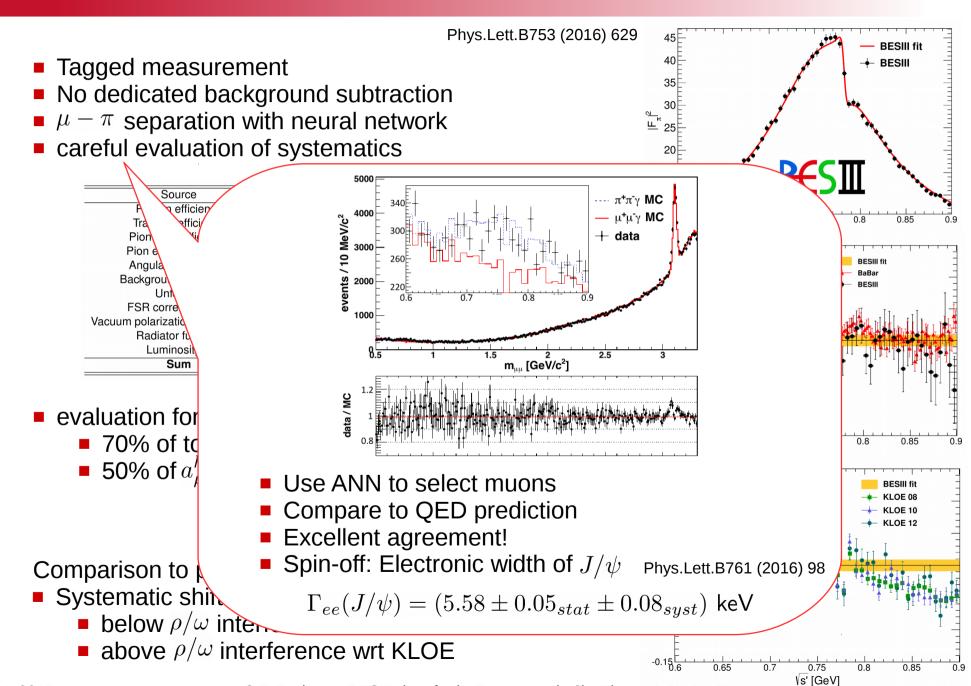
(g-2)μ Theory Initiative Workshop

Phys.Lett.B753 (2016) 629

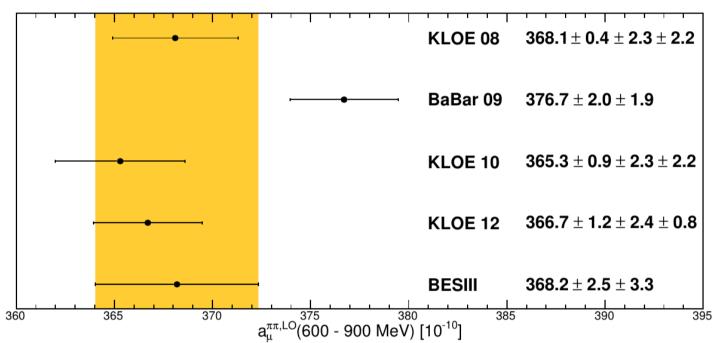

- Tagged measurement
- No dedicated background subtraction
- $\mu \pi$ separation with neural network
- careful evaluation of systematics

Source	Uncertainty (%)
Photon efficiency	0.2
Tracking efficiency	0.3
Pion ANN efficiency	0.2
Pion e-PID efficiency	0.2
Angular acceptance	0.1
Background subtraction	0.1
Unfolding	0.2
FSR correction δ_{FSR}	0.2
Vacuum polarization correction δ_{vac}	0.2
Radiator function	0.5
Luminosity $\mathcal L$	0.5
Sum	0.9

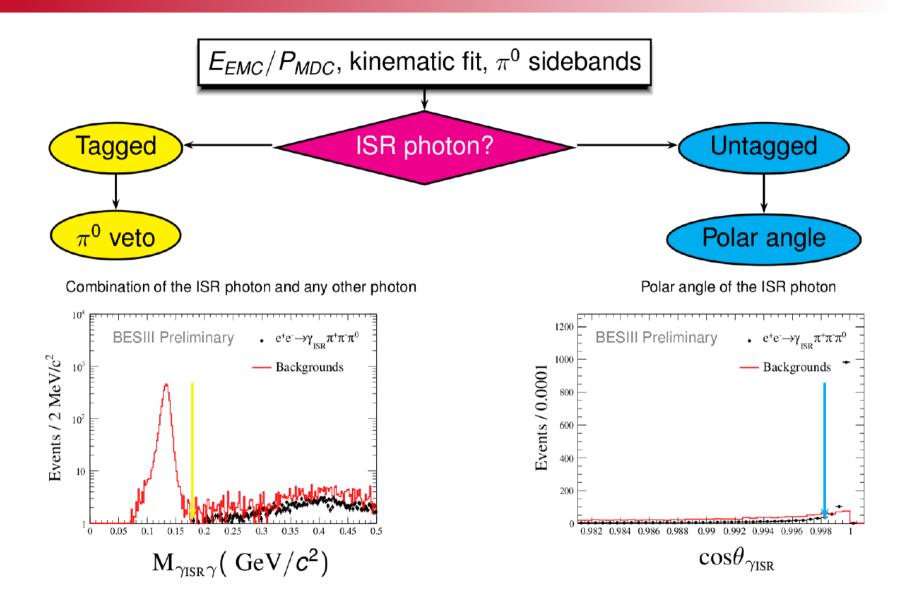
- evaluation for $0.6 \le m_{\pi\pi} \le 0.9$
 - 70% of total 2π contribution
 - 50% of a_{μ}^{hVP} contribution


Comparison to previous measurements:

- Systematic shift in pion form factor
 - below ρ/ω interference wrt BaBar
 - above ρ/ω interference wrt KLOE


JG

$e^+e^- \rightarrow \pi^+\pi^-$

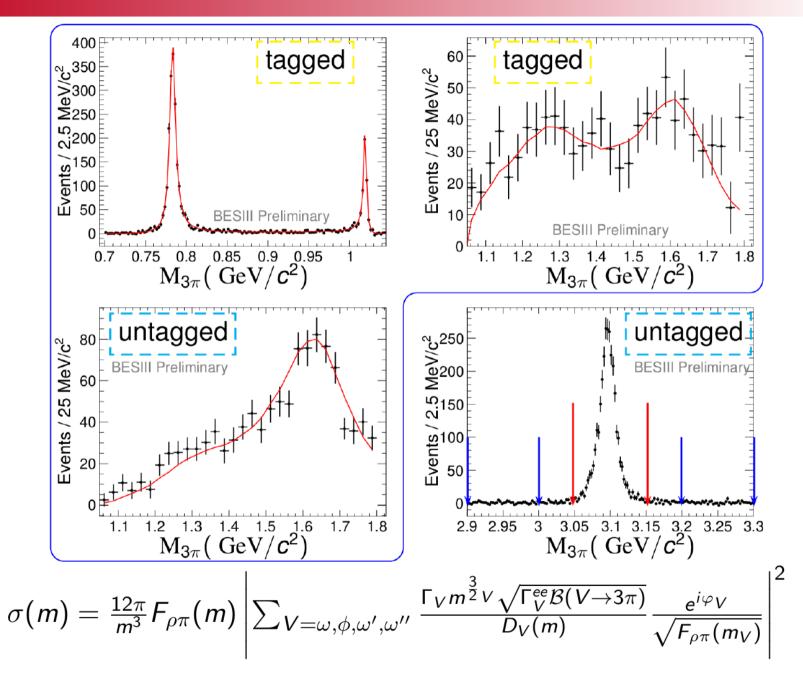

$$e^+e^- \rightarrow \pi^+\pi^-$$

Ablikim et al., Phys.Lett.B753 (2016) 629

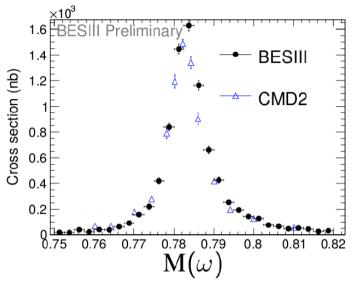
- Precision competitive to measurements by BaBar and KLOE
- Good agreement with all KLOE results
- BESIII result confirms $a_{\mu}^{\rm theo,SM} a_{\mu}^{\rm exp} > 3\sigma$

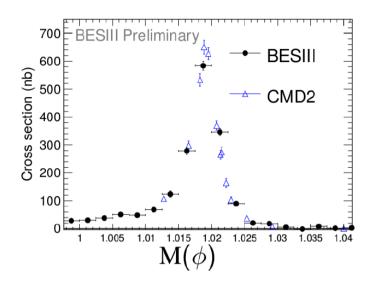
$$e^{+}e^{-} \to \pi^{+}\pi^{-}\pi^{0}$$

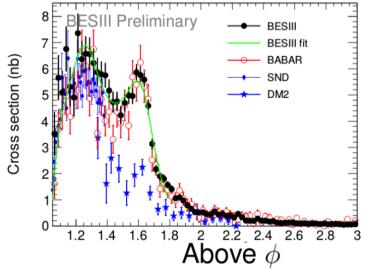
■ Measure $e^+e^- \to \pi^+\pi^-\pi^0\pi^0(\gamma)$ to correct background description


$g^{|} U e^{+}e^{-} \to \pi^{+}\pi^{-}\pi^{0}$

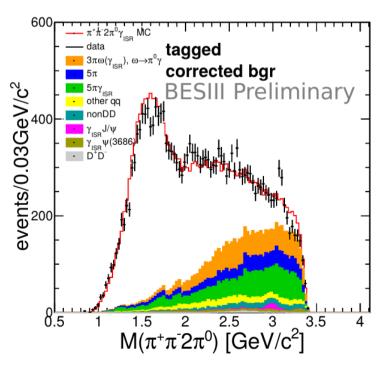
BESIII Preliminary					
Data samples	Da	ta I	Data II		
Source	Tagged	Untagged	Tagged	Untagged	
Tracking	0.4-1.0	0.4-0.9	0.4-0.7	0.4-0.7	
Photon reconstruction	0.9	0.6	0.9	0.6	
E/P	0.7-0.9	0.4	0.4	0.4	
π^0 side band	0.6-0.9	0.4	0.4	0.4	
Kinematic fit (χ^2 cut)	1.0-1.4	0.4	0.6	0.4	
Veto π^0 for $\gamma_{\rm ISR}$	0.6	-	0.5-1.0	-	
$\cos heta_{\gamma_{ m ISR}}^{2C}$	-	1.5	-	1.5	
Vertex	-	0.2	-	0.2	
BG subtraction	0.0-19	0-12	0.04-26	0-6.1	
Vacuum polarization	0.02-0.23	0.02-0.07	0.02-0.23	0.02-0.07	
Unfolding	0.91-1.7	1.3	0.61-0.93	0.77	
Radiative function	0.5 0.5 0.5		0.5	0.5	
Luminosity	1.1	1.1	1.1	1.1	
Total	> 2.4	> 2.6	> 2.0	> 2.4	

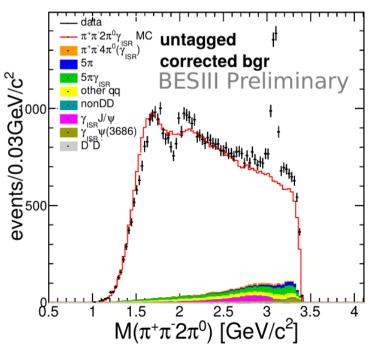

in unit [%]


ullet Systematic error < 2% in the resonance regions


$$e^{+}e^{-} \to \pi^{+}\pi^{-}\pi^{0}$$

$e^{+}e^{-} \to \pi^{+}\pi^{-}\pi^{0}$

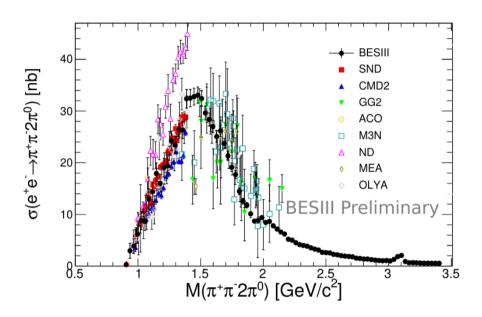




- Good agreement with previous measurements
- Improved precision
- lacksquare Confirms BaBar result at $\,\omega''$
- Input for a_{μ}^{hVP}

$$e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}\pi^{0}$$

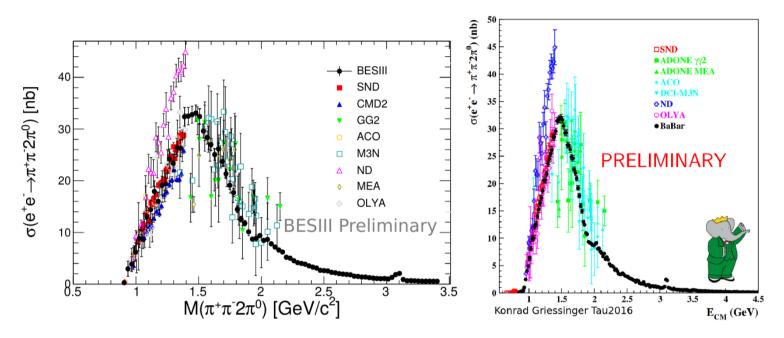
- Strategy similar to $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ analysis:
 - Tagged photon:
 - Kinematic fit (6C)
 - Veto π^0 with ISR photons
 - Untagged photon:
 - Kinematic fit (3C)
 - require $|\cos\theta_{\mathsf{ISR}}| > 0.995$
- Measure $e^+e^- \to \pi^+\pi^-\pi^0\pi^0\pi^0(\gamma)$ to correct background description



Region	Mass range [GeV]
R1	$0.5 < M(4\pi) < 1.5$
R2	$1.5 < M(4\pi) < 2.0$
R3	$2.0 < M(4\pi) < 3.0$
R4	$3.0 < M(4\pi) < 3.8$

Source	Tagged [%]			Untagged [%]				
	R1	R2	R3	R4	R1	R2	R3	R4
Luminosity	0.50				0.	50		
Tracking	0.60			0.60				
VP correction	0.05			0.05				
FSR correction	0.20			0.20				
Radiator Function	0.50			0.50				
ISR Photon Eff.	0.30					-		
π^0 Eff.	2.57			2.52				
Signal Eff.	0.58			0.61				
Kin. fit	0.42			0.45				
Event selection	0.60 1.46		0.64					
Bgr. Subrt. 5π	0.01	0.13	2.47	3.23	0.00	0.01	0.08	0.15
Bgr. Subrt. $5\pi\gamma_{ISR}$	0.48	0.47	7.77	10.27	0.59	0.25	0.65	0.71
Bgr. Subrt. $q \bar{q}$	0.50	0.98	12.68	21.05	0.58	0.22	0.82	0.76
Bgr. Subrt. other	0.05	0.14	2.31	5.34	0.01	0.02	0.30	0.32
ω fits (only for $\omega\pi^0$)	2.26				2.	26		
$\pi^+\pi^-2\pi^0$ Total	2.97	3.09	15.58	24.45	2.95	2.85	3.04	3.04
$\omega\pi^0$ Total	3.80	4.84	7.71	3.73	3.91	3.70	4.48	3.68

JG U $e^+e^- \to \pi^+\pi^-\pi^0\pi^0$

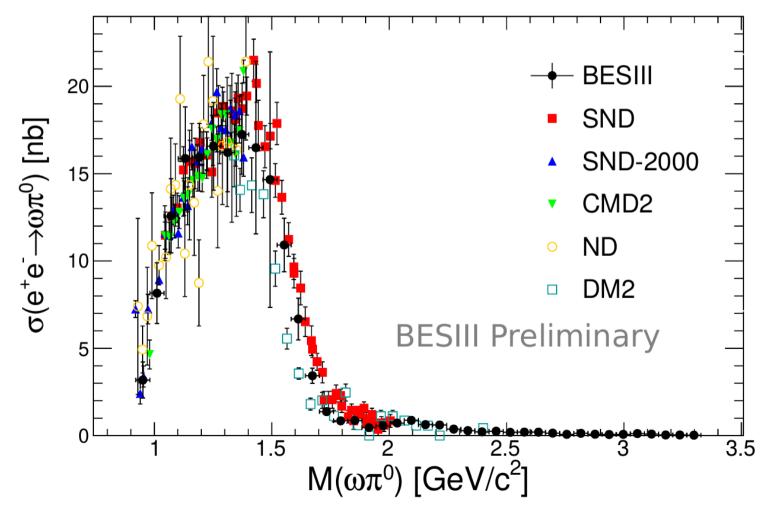


- Error weighted mean of tagged and untagged results
- Good agreement with previous measurements
- Improved precision

$$a_{\mu}^{\pi^+\pi^-2\pi^0, {\sf LO}} = rac{1}{4\pi^3} \int \limits_{(4m_{\pi})^2}^{(1.8\,{\sf GeV})^2} ds \, K(s) \sigma_{\pi^+\pi^-2\pi^0}(s)$$

$$a_{\mu}^{\pi^+\pi^-2\pi^0,\mathsf{LO}}/10^{-10}$$
 BESIII (preliminary) $18.63\pm0.27\pm0.57$

JG U $e^+e^- \to \pi^+\pi^-\pi^0\pi^0$


- Error weighted mean of tagged and untagged results
- Good agreement with previous measurements also with BaBar preliminary
- Improved precision

$$a_{\mu}^{\pi^+\pi^-2\pi^0,\mathsf{LO}} = rac{1}{4\pi^3} \int\limits_{(4m_\pi)^2}^{(1.8\,\mathsf{GeV})^2} ds\, K(s) \sigma_{\pi^+\pi^-2\pi^0}(s)$$

	$a_{\mu}^{\pi^+\pi^-2\pi^0, {\sf LO}}/10^{-10}$
BESIII (preliminary)	$18.63 \pm 0.27 \pm 0.57$
BABAR (preliminary)	$17.9 \pm 0.1 \pm 0.6$

$_{\rm JG}|_{\rm U}$ $_{\rm e}^{+}{\rm e}^{-} ightarrow \omega\pi^{0}$

- Fit ω signal on smooth background in every bin of $M_{\pi^+\pi^-\pi^0\pi^0}$
- Good agreement with previous measurements

Summary

- Hadronic cross section measurements at BESIII
 - Scan, tagged and untagged ISR methods
 - Competitive accuracy
 - $\pi^+\pi^-$ result confirms $a_{\mu}^{\rm theo,SM} a_{\mu}^{\rm exp} > 3\sigma$
 - Preliminary results on $e^+e^- \to \pi^+\pi^-\pi^0$ and $e^+e^- \to \pi^+\pi^-\pi^0\pi^0$

- Ongoing analyses:
 - Pion form factor from:
 - R-Scan data between 2.0 and 3.08 GeV
 - Low mass tail in tagged ISR analysis
 - At masses larger 1 GeV
- Additional final states ?

PHIPSI: INTERNATIONAL WORKSHOP on e⁺e⁻ collisions from Phi to Psi 2017

Evgeny Solodov, Novosibirsk, Russia

Arkady Vainshtein, Minnesota, USA

Graziano Venanzoni, Frascati, Italy

Zhipeng Zheng, IHEP Beijing, China

Changzheng Yuan, IHEP Beijing, China

Luca Trentadue, Parma, Italy

Egle Tomasi-Gustafsson, Orsay, France

International Advisory Committee

Rinaldo Baldini, Frascati, Italy

Kuang-Ta Chao, Peking University, China

Gilberto Colangelo, Bern, Switzerland

Henryk Czyż, Katowice, Poland

Michel Davier, Orsay, France

Achim Denig, Mainz, Germany

Simon Eidelman, Novosibirsk, Russia

Paolo Gauzzi, Rome, Italy

Fred Harris, Hawaii, USA

Guanoshun Huang, Hefel, China

Johann Kühn, Karkruhe, Germany

Alberto Lusiani, Pisa, Italy

Jianping Ma, HEP Beijing, China

Massimo Passera, Padova, Italy

Lee Roberts, Boston, USA

Xiaoyan Shen, HEP Bolling, China

Boris Shwartz, Novosibirsk, Russia

Local Organizing Commitee

Achim Denig (Chair)

Susanne Fischer (Conference Secretary)

Frank Maas

Harald Merkel

Christoph Redmer (Scientific Secretary)

Marc Vanderhaeghen

Sascha Wagner (Webmaster)

26-29 June 2017 Mainz, Germany

TOPICS

R measurements

Two-photon reactions

Proton radius

Electroweak mixing angle

Dark sector

Flavor physics

