Pseudoscalar-pole contribution to $(g_{\mu} - 2)$: a rational approach

Pablo Sanchez-Puertas sanchezp@ipnp.troja.mff.cuni.cz

Charles University Prague

In collaboration with P. Masjuan

First Workshop of the Muon g-2 initiative Q Center, $3-6^{th}$ June 2016

CHARLES UNIVERSITY Faculty of mathematics and physics

Outline

- 1. Hadronic light-by-light: pseudoscalar pole contribution
- 2. Form factor description for the HLbL: rational approach
- 3. Updated pseudoscalar pole contribution

Section 1

Hadronic light-by-light: pseudoscalar pole contribution

- Not straightforward connection to data
- Dispersive proposals recently (involved)
- Multi-scale problem \rightarrow more difficulties

- Not straightforward connection to data
- Dispersive proposals recently (involved)
- Multi-scale problem \rightarrow more difficulties

E. de Rafael (1994): large- $N_c + \chi PT$

- Not straightforward connection to data
- Dispersive proposals recently (involved)
- Multi-scale problem \rightarrow more difficulties

E. de Rafael (1994): large- $N_c + \chi$ PT

Authors	π^{0},η,η'	$\pi\pi, KK$	Resonances	Quark Loop	Total
BPP	85(13)	-19(13)	-4(3)	21(3)	83(32)
HKS	83(6)	-5(8)	2(2)	10(11)	90(15)
KN	83(12)	_	_	_	80(40)
MV	114(10)	-	22(5)	_	136(25)
PdRV	114(13)	-19(19)	8(12)	2.3	105(20)
N/JN	99(16)	-19(13)	15(7)	21(3)	116(39)

Classic Results (10^{-11} units)

- Enough for $\delta a_{\mu} = 63 \times 10^{-11}$
- Not in future $\delta a_{\mu} = 16 \times 10^{-11}$
- Most results circa 15 years old

- Not straightforward connection to data
- Dispersive proposals recently (involved)
- Multi-scale problem \rightarrow more difficulties

E. de Rafael (1994): large- $N_c + \chi$ PT

Authors	π^{0}, η, η'	$\pi\pi, KK$	Resonances	Quark Loop	Total
BPP	85(13)	-19(13)	-4(3)	21(3)	83(32)
HKS	83(6)	-5(8)	2(2)	10(11)	90(15)
KN	83(12)	-	_	_	80(40)
MV	114(10)	-	22(5)	-	136(25)
PdRV	114(13)	-19(19)	8(12)	2.3	105(20)
N/JN	99(16)	-19(13)	15(7)	21(3)	116(39)

Update π^0 , η , η' Contributions

HLbL: the pseudoscalar-pole contribution

For the most general HLbL integral the Green's function

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = \int d^4 x_i e^{ip_i \cdot x_i} \langle \Omega | T\{j^{\mu}(x_1)j^{\nu}(x_2)j^{\rho}(x_3)j^{\sigma}(x_4)\} | \Omega \rangle$$

For the most general HLbL integral the Green's function

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = \int d^4 x_i e^{ip_i \cdot x_i} \langle \Omega | T\{j^{\mu}(x_1)j^{\nu}(x_2)j^{\rho}(x_3)j^{\sigma}(x_4)\} | \Omega \rangle$$

At low energies insert lowest-lying intermediate states (close to pole):

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = \int d^4 x_i e^{ip_i \cdot x_i} \frac{i \langle \Omega | T\{j^{\mu}(0)j^{\nu}(x_2)\} | P \rangle \langle P | T\{j^{\rho}(0)j^{\sigma}(x_4)\} | \Omega \rangle}{q^2 - m_P^2 + i\epsilon} + \dots$$

For the most general HLbL integral the Green's function

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = \int d^4 x_i e^{ip_i \cdot x_i} \langle \Omega | T\{j^{\mu}(x_1)j^{\nu}(x_2)j^{\rho}(x_3)j^{\sigma}(x_4)\} | \Omega \rangle$$

At low energies insert lowest-lying intermediate states (close to pole):

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = i\epsilon^{\mu\nu\alpha\beta} p_{1\alpha} p_{2\beta} \frac{i|F_{P\gamma^*\gamma^*}(p_1^2, p_2^2)|^2}{(p_1 + p_2)^2 - m_P^2} i\epsilon^{\rho\sigma\gamma\delta} p_{1\gamma} p_{2\delta} + \text{ crossed } + \dots$$

For the most general HLbL integral the Green's function

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = \int d^4 x_i e^{ip_i \cdot x_i} \langle \Omega | T\{j^{\mu}(x_1)j^{\nu}(x_2)j^{\rho}(x_3)j^{\sigma}(x_4)\} | \Omega \rangle$$

At low energies insert lowest-lying intermediate states (close to pole):

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = i\epsilon^{\mu\nu\alpha\beta} p_{1\alpha} p_{2\beta} \frac{i|F_{P\gamma^*\gamma^*}(p_1^2, p_2^2)|^2}{(p_1 + p_2)^2 - m_P^2} i\epsilon^{\rho\sigma\gamma\delta} p_{1\gamma} p_{2\delta} + \text{ crossed } + \dots$$

Related to physical process! Graphically, it looks like

For the most general HLbL integral the Green's function

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = \int d^4 x_i e^{ip_i \cdot x_i} \langle \Omega | T\{j^{\mu}(x_1)j^{\nu}(x_2)j^{\rho}(x_3)j^{\sigma}(x_4)\} | \Omega \rangle$$

At low energies insert lowest-lying intermediate states (close to pole):

$$\Pi^{\mu\nu\rho\sigma}(p_1, p_2, p_3, p_4) = i\epsilon^{\mu\nu\alpha\beta} p_{1\alpha} p_{2\beta} \frac{i|F_{P\gamma^*\gamma^*}(p_1^2, p_2^2)|^2}{(p_1 + p_2)^2 - m_P^2} i\epsilon^{\rho\sigma\gamma\delta} p_{1\gamma} p_{2\delta} + \text{ crossed } + \dots$$

Related to physical process! Experimentally, it looks like

HLbL: the pseudoscalar-pole contribution

• Plug previous result into HLbL (g - 2) contribution

HLbL: the pseudoscalar-pole contribution

• Plug previous result into HLbL (g - 2) contribution

• After some fun with loops and algebra [JN Phys.Rept., 477 (2009)] $\begin{aligned} a_{\ell}^{\text{HLbL};P} &= \frac{-2\pi}{3} \left(\frac{\alpha}{\pi}\right)^3 \int_0^{\infty} dQ_1 dQ_2 \int_{-1}^{+1} dt \sqrt{1-t^2} Q_1^3 Q_2^3 \\ & \times \left[\frac{F_{P\gamma^*\gamma^*}(Q_1^2, Q_3^2) F_{P\gamma^*\gamma}(Q_2^2, 0) I_1(Q_1, Q_2, t)}{Q_2^2 + m_P^2} + \frac{F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2) F_{P\gamma^*\gamma}(Q_3^2, 0) I_2(Q_1, Q_2, t)}{Q_3^2 + m_P^2}\right] \end{aligned}$

HLbL: the pseudoscalar-pole contribution

• Plug previous result into HLbL (g - 2) contribution

- After some fun with loops and algebra [JN Phys.Rept., 477 (2009)] $\begin{aligned} a_{\ell}^{\text{HLbL};P} &= \frac{-2\pi}{3} \left(\frac{\alpha}{\pi}\right)^3 \int_0^{\infty} dQ_1 dQ_2 \int_{-1}^{+1} dt \sqrt{1-t^2} Q_1^3 Q_2^3 \\ &\times \left[\frac{F_{P\gamma^*\gamma^*}(Q_1^2, Q_3^2) F_{P\gamma^*\gamma}(Q_2^2, 0) I_1(Q_1, Q_2, t)}{Q_2^2 + m_P^2} + \frac{F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2) F_{P\gamma^*\gamma}(Q_3^2, 0) I_2(Q_1, Q_2, t)}{Q_3^2 + m_P^2}\right] \end{aligned}$
- Without the transition form factors $F_{\pi\gamma^*\gamma^*}(Q_1^2,Q_2^2)$ integrands look like

HLbL: the pseudoscalar-pole contribution

• Plug previous result into HLbL (g - 2) contribution

- After some fun with loops and algebra [JN Phys.Rept., 477 (2009)] $\begin{aligned} a_{\ell}^{\text{HLbL};P} &= \frac{-2\pi}{3} \left(\frac{\alpha}{\pi}\right)^3 \int_0^{\infty} dQ_1 dQ_2 \int_{-1}^{+1} dt \sqrt{1-t^2} Q_1^3 Q_2^3 \\ & \times \left[\frac{F_{P\gamma^*\gamma^*}(Q_1^2, Q_3^2) F_{P\gamma^*\gamma}(Q_2^2, 0) I_1(Q_1, Q_2, t)}{Q_2^2 + m_P^2} + \frac{F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2) F_{P\gamma^*\gamma}(Q_3^2, 0) I_2(Q_1, Q_2, t)}{Q_3^2 + m_P^2}\right] \end{aligned}$
- Without the transition form factors $F_{\pi\gamma^*\gamma^*}(Q_1^2,Q_2^2)$ integrands look like

We reduced everything to an integral involving physical input Description for space-like $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$, specially below 2 GeV Incorporate high-energy description (otherwise $I_1(Q_1, Q_2, t)$ diverges)

Section 2

A transition form factor description for the HLbL

Describing the TFF I: First principles

$$\frac{Q^2 \to \infty}{Q^{2} \to \infty} F_{\pi\gamma\gamma^*}(0, Q^2) = \frac{2F_{\pi}}{Q^2}$$
$$\lim_{Q^2 \to \infty} F_{\pi\gamma^*\gamma^*}(Q^2, Q^2) = \frac{2F_{\pi}}{3Q^2}$$
Guarantee convergence!
$$Q^2 \to 0$$
$$F_{\pi\gamma\gamma}(0, 0) = (4\pi^2 F_{\pi})^{-1}$$

Describing the TFF II: Model approaches

-Lagrangian-based

Nambu Jona Lasinio • Hidden Local Symmetry • Resonance chiral th. • ...

- Nice overall picture, but not precision
- Ok, they are models (not full QCD), problem is uncertainty estimate

Describing the TFF II: Model approaches

-Lagrangian-based

Nambu Jona Lasinio • Hidden Local Symmetry • Resonance chiral th. • ...

- Nice overall picture, but not precision
- Ok, they are models (not full QCD), problem is uncertainty estimate

-Phenomenological Data-based

Large- N_c -based + Resonance saturation + Data-fitting

- Experiment is full QCD \longrightarrow Fit it with a model
- Data not always available where required ightarrow extrapolation reliability?
- How to systematically improve to arbitrary known precision?

Describing the TFF II: Model approaches

-Lagrangian-based

Nambu Jona Lasinio • Hidden Local Symmetry • Resonance chiral th. • ...

- Nice overall picture, but not precision
- Ok, they are models (not full QCD), problem is uncertainty estimate

-Phenomenological Data-based

Large- N_c -based + Resonance saturation + Data-fitting

- Experiment is full QCD \longrightarrow Fit it with a model
- Data not always available where required ightarrow extrapolation reliability?
- How to systematically improve to arbitrary known precision?
- -Data-based (not a model) Dispersive reconstruction
 - Data based, in principle full QCD
 - In practice most of QCD contributions \Rightarrow Not full Q^2 reconstruction

Objectives and strategies

—What do we need?

A model-independent approach for pseudoscalar transition form factors (at least in the euclidean space-like region)

Objectives and strategies

-What do we need?

A model-independent approach for pseudoscalar transition form factors (at least in the euclidean space-like region)

-What is the philosophy?

Toolkit allowing full use of data & QCD constraints on form factors

Objectives and strategies

-What do we need?

A model-independent approach for pseudoscalar transition form factors (at least in the euclidean space-like region)

-What is the philosophy?

Toolkit allowing full use of data & QCD constraints on form factors

—How to implement for single-virtual case? We propose to use Padé Approximants

Objectives and strategies

-What do we need?

A model-independent approach for pseudoscalar transition form factors (at least in the euclidean space-like region)

-What is the philosophy?

Toolkit allowing full use of data & QCD constraints on form factors

—How to implement for single-virtual case? We propose to use Padé Approximants

—How to implement the double virtual Form Factor? Generalize our approach to bivariate functions: Canterbury Approximants

Objectives and strategies

—What do we need? A model-independent approach for pseudoscalar transition form factors (at least in the euclidean space-like region)

—How to implement for single-virtual case? We propose to use Padé Approximants

—How to implement the double virtual Form Factor? Generalize our approach to bivariate functions: Canterbury Approximants

Padé Approximants: Introduction to the method

Given a function with known series expansion

$$F_{P\gamma\gamma^*}(Q^2) = F_{P\gamma\gamma^*}(0)(1 + b_PQ^2 + c_PQ^4 + ...)$$
 i.e. χPT

Its Padé approximant is defined as

$$P_{M}^{N}(Q^{2}) = \frac{T_{N}(Q^{2})}{R_{M}(Q^{2})} = F_{P\gamma\gamma^{*}}(0)(1 + b_{P}Q^{2} + c_{P}Q^{4} + ... + \mathcal{O}(Q^{2})^{N+M+1})$$

Convergence th. \Rightarrow Model-independency Increase $\{N, M\} \Rightarrow$ Systematic error estimation

$$P_1^0 = \frac{F_{P\gamma\gamma^*}(0)}{1 - b_P Q^2} = F_{P\gamma\gamma^*}(0)(1 + b_P Q^2 + \mathcal{O}(Q^4)) \xrightarrow{} \chi \text{PT/DR} + \text{pQCD}$$

Correct low (& high) energy implementation!

Pseudoscalar-pole contribution to $(g_{\mu}-2)$: a rational approach

A transition form factor description for the HLbL

Padé Approximants: Results

P. Masjuan '12; R. Escribano, P. Masjuan, P. S (& S. Gonzalez) '14 '15 (&16)

Pseudoscalar-pole contribution to $(g_{\mu}-2)$: a rational approach

A transition form factor description for the HLbL

Padé Approximants: Results

P. Masjuan '12; R. Escribano, P. Masjuan, P. S (& S. Gonzalez) '14 '15 (&16)

Objectives and strategies

—What do we need?

A model-independent approach for pseudoscalar transition form factors (at least in the euclidean space-like region)

----What is the philosophy? Toolkit allowing full use of data & QCD constraints on form factors

—How to implement for single-virtual case? We proppose to use Padé Approximants

—How to implement the double-virtual Form Factor? Generalize our approach to bivariate functions: Canterbury Approximants

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

For a symmetric function with Taylor expansion

$$F_{P\gamma^*\gamma^*}(Q_1^2,Q_2^2) = F_{P\gamma\gamma}(0,0)(1+c_{1,0}(Q_1^2+Q_2^2)+c_{2,0}(Q_1^4+Q_2^4)+c_{1,1}Q_1^2Q_2^2+...)$$

Its Canterbury appproximant is defined as

$$C_{M}^{N}(Q_{1}^{2},Q_{2}^{2}) = \frac{T_{N}(Q_{1}^{2},Q_{2}^{2})}{Q_{M}(Q_{1}^{2},Q_{2}^{2})} = \frac{\sum_{i,j}^{N} a_{i,j}Q_{1}^{2i}Q_{2}^{2j}}{\sum_{k,l}^{M} b_{k,l}Q_{1}^{2k}Q_{2}^{2l}}$$

Fulfilling the conditions that

$$\begin{split} \sum_{i,j}^{M} b_{i,j} Q_1^{2i} Q_2^{2j} \sum_{\alpha,\beta}^{\infty} c_{\alpha,\beta} Q_1^{2\alpha} Q_2^{2\beta} &- \sum_{k,l}^{N} a_{k,l} Q_1^{2k} Q_2^{2l} = \sum_{\gamma,\delta}^{\infty} d_{\gamma,\delta} Q_1^{2\gamma} Q_2^{2\delta}, \\ d_{\gamma,\delta} &= 0 \quad 0 \leq \gamma + \delta \leq M + N \\ d_{\gamma,\delta} &= 0 \quad 0 \leq \gamma \leq \max(M, N), \\ 0 \leq \delta \leq \max(M, N) \\ d_{\gamma,\delta} &= 0 \quad 1 \leq \gamma \leq \min(M, N), \\ \delta &= M + N + 1 - \gamma. \end{split}$$

What about the double-virtual $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$?

For a symmetric function with Taylor expansion

$$F_{P\gamma^*\gamma^*}(Q_1^2,Q_2^2) = F_{P\gamma\gamma}(0,0)(1+c_{1,0}(Q_1^2+Q_2^2)+c_{2,0}(Q_1^4+Q_2^4)+c_{1,1}Q_1^2Q_2^2+...)$$

Its Canterbury appproximant is defined as

$$C_{M}^{N}(Q_{1}^{2},Q_{2}^{2}) = \frac{T_{N}(Q_{1}^{2},Q_{2}^{2})}{Q_{M}(Q_{1}^{2},Q_{2}^{2})} = \frac{\sum_{i,j}^{N} a_{i,j}Q_{1}^{2i}Q_{2}^{2j}}{\sum_{k,l}^{M} b_{k,l}Q_{1}^{2k}Q_{2}^{2l}}$$

As an example

$$C_1^0(Q_1^2,Q_2^2) = \frac{F_{P\gamma\gamma}(0,0)}{1 - b_P(Q_1^2 + Q_2^2) + (2b_P^2 - a_{P;1,1})Q_1^2Q_2^2} = F_{P\gamma\gamma}(0,0)(1 + b_P(Q_1^2 + Q_2^2) + a_{P;1,1}Q_1^2Q_2^2 + \dots)$$

- Again, similar conclusions/procedure to the previous case
- However, lack of data (desirable; in the meantime, surmountable)

Pseudoscalar-pole contribution to $(g_{\mu}-2)$: a rational approach

A transition form factor description for the HLbL

Seeing is believing: toy models and systematics

 $-a_{\mu}^{\pi}$: Regge Model-

$$\mathsf{F}^{\text{Regge}}_{\pi^{0}\gamma^{*}\gamma^{*}}(Q_{1}^{2},Q_{2}^{2}) = \frac{a F_{P\gamma\gamma}}{Q_{1}^{2} - Q_{2}^{2}} \frac{\left[\psi^{(0)}\left(\frac{M^{2} + Q_{1}^{2}}{a}\right) - \psi^{(0)}\left(\frac{M^{2} + Q_{2}^{2}}{a}\right)\right]}{\psi^{(1)}\left(\frac{M^{2}}{a}\right)}$$

 $-a_{\mu}^{\pi}$: Logarithmic Model-

$$F^{\log}_{\pi^0\gamma^*\gamma^*}(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}M^2}{Q_1^2 - Q_2^2} \ln\left(rac{1 + Q_1^2/M^2}{1 + Q_2^2/M^2}
ight)$$

	C_{1}^{0}	C_2^1	C_{3}^{2}	C_4^3
LE	55.2	59.7	60.4	60.6
OPE	65.7	60.8	60.7	60.7
Fit ^{OPE}	66.3	62.7	61.1	60.8
Exact		60.7		

	C_{1}^{0}	C_2^1	C_{3}^{2}	C_4^3
LE OPE Fit ^{OPE}	56.7 65.7 79.6	64.4 67.3 71.9	66.1 67.5 69.3	66.8 67.6 68.4
Exact	67.6			

P. Masjuan & P. Sanchez Phys.Rev. D95, 054026 (2017)

Pseudoscalar-pole contribution to $(g_{\mu}-2)$: a rational approach

A transition form factor description for the HLbL

Seeing is believing: toy models and systematics

 $-a_{\mu}^{\pi}$: Regge Model-

$$\mathcal{F}^{\text{Regge}}_{\pi^{0}\gamma^{*}\gamma^{*}}(Q_{1}^{2},Q_{2}^{2}) = \frac{aF_{P\gamma\gamma}}{Q_{1}^{2}-Q_{2}^{2}} \frac{\left[\psi^{(0)}\left(\frac{M^{2}+Q_{1}^{2}}{a}\right) - \psi^{(0)}\left(\frac{M^{2}+Q_{2}^{2}}{a}\right)\right]}{\psi^{(1)}\left(\frac{M^{2}}{a}\right)}$$

 $-a_{\mu}^{\pi}$: Logarithmic Model-

$$F^{\log}_{\pi^0\gamma^*\gamma^*}(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}M^2}{Q_1^2 - Q_2^2} \ln\left(rac{1 + Q_1^2/M^2}{1 + Q_2^2/M^2}
ight)$$

	C_{1}^{0}	C_2^1	C_{3}^{2}	C_4^3
LE OPE Fit ^{OPE}	55.2 65.7 66.3	59.7 60.8 62.7	60.4 60.7 61.1	60.6 60.7 60.8
Exact		60.7		

	C_{1}^{0}	C_2^1	C_{3}^{2}	C_4^3
LE	56.7	64.4	66.1	66.8
OPE	65.7	67.3	67.5	67.6
Fit ^{OPE}	79.6	71.9	69.3	68.4
Exact	67.6			

- The convergence result is excellent!
- The OPE choice seems the best \rightarrow high energy matters
- Still, low energies provide a good performance
- Error \sim difference among elements \rightarrow Systematics!

P. Masjuan & P. Sanchez Phys.Rev. D95, 054026 (2017)

Pseudoscalar-pole contribution to $(g_{\mu} - 2)$: a rational approach Updated pseudoscalar pole contribution

Section 3

Updated pseudoscalar pole contribution

Pseudoscalar-pole contribution to $(g_{\mu}-2)$: a rational approach

Updated pseudoscalar pole contribution

Reconstructing
$$F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$$

—Simplest approach: $C_1^0(Q_1^2, Q_2^2)$

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1-b_P(Q_1^2+Q_2^2)+(2b_P^2-a_{P;1,1})Q_1^2Q_2^2}.$$
Updated pseudoscalar pole contribution

Reconstructing
$$F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$$

—Simplest approach: $C_1^0(Q_1^2, Q_2^2)$

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1-b_P(Q_1^2+Q_2^2)+(2b_P^2-a_{P;1,1})Q_1^2Q_2^2}.$$

—Reconstruction

1.Reproduce original series expansion \Rightarrow low energies

$$C_1^0(Q_1^2, Q_2^2) = F_{P\gamma\gamma}(0, 0)(1 + b_P(Q_1^2 + Q_2^2) + a_{P;1,1}Q_1^2Q_2^2 + ...)$$

Updated pseudoscalar pole contribution

Reconstructing
$$F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$$

—Simplest approach: $C_1^0(Q_1^2, Q_2^2)$

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1-b_P(Q_1^2+Q_2^2)+(2b_P^2-a_{P;1,1})Q_1^2Q_2^2}.$$

—Reconstruction

1.Reproduce original series expansion \Rightarrow low energies

2. Reduce to Padé Approximants

$$C_1^0(Q^2,0) = rac{F_{P\gamma\gamma}(0,0)}{1-b_PQ^2} = P_1^0(Q^2) \Rightarrow F_{P\gamma\gamma}(0,0) \& b_P ext{ determined}$$

Updated pseudoscalar pole contribution

Reconstructing
$$F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$$

—Simplest approach: $C_1^0(Q_1^2, Q_2^2)$

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1-b_P(Q_1^2+Q_2^2)+(2b_P^2-a_{P;1,1})Q_1^2Q_2^2}.$$

—Reconstruction

1.Reproduce original series expansion \Rightarrow low energies

2.Reduce to Padé Approximants (already determined)

3.Systematically implement double virtuality: $a_{P;1,1}$ (LE) (Exp. unknown)

Updated pseudoscalar pole contribution

Reconstructing
$$F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$$

—Simplest approach: $C_1^0(Q_1^2, Q_2^2)$

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1-b_P(Q_1^2+Q_2^2)+(2b_P^2-a_{P;1,1})Q_1^2Q_2^2}.$$

—Reconstruction

- 1.Reproduce original series expansion \Rightarrow low energies
- 2.Reduce to Padé Approximants (already determined)
- 3.Systematically implement double virtuality: $a_{P;1,1}$ (LE) (Exp. unknown)

Constrain OPE \Rightarrow better convergence

$$C_1^0(Q_1^2,Q_2^2)|_{OPE} = rac{F_{P\gamma\gamma}(0,0)}{1+b_P(Q_1^2+Q_2^2)}; \ (a_{P;1,1}\equiv 2b_P^2) \ OPE$$

Updated pseudoscalar pole contribution

Reconstructing
$$F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$$

—Simplest approach: $C_1^0(Q_1^2, Q_2^2)$

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1-b_P(Q_1^2+Q_2^2)+(2b_P^2-a_{P;1,1})Q_1^2Q_2^2}.$$

—Reconstruction

- 1.Reproduce original series expansion \Rightarrow low energies
- 2.Reduce to Padé Approximants (already determined)
- 3.Systematically implement double virtuality: $a_{P;1,1}$ (LE) (Exp. unknown)

Constrain OPE \Rightarrow better convergence

$$C_1^0(Q_1^2,Q_2^2)|_{OPE} = rac{F_{P\gamma\gamma}(0,0)}{1+b_P(Q_1^2+Q_2^2)}; \ \ (a_{P;1,1}\equiv 2b_P^2) \ OPE$$

Simplest rational approximation to $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$ Satisfies both low & high energies

Reconstructing
$$F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$$

-Next element: $C_2^1(Q_1^2, Q_2^2)$

$$C_{2}^{1}(Q_{1}^{2},Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0,0)(1+\alpha_{1}(Q_{1}^{2}+Q_{2}^{2})+\alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1+\beta_{1}(Q_{1}^{2}+Q_{2}^{2})+\beta_{2}(Q_{1}^{4}+Q_{2}^{4})+\beta_{1,1}Q_{1}^{2}Q_{2}^{2}+\beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2}+Q_{2}^{2})+\beta_{2,2}Q_{1}^{4}Q_{2}^{4}}$$

Reconstructing
$$F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$$

-Next element: $C_2^1(Q_1^2, Q_2^2)$

$$C_{2}^{1}(Q_{1}^{2}, Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0, 0)(1 + \alpha_{1}(Q_{1}^{2} + Q_{2}^{2}) + \alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1 + \beta_{1}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2}(Q_{1}^{4} + Q_{2}^{4}) + \beta_{1,1}Q_{1}^{2}Q_{2}^{2} + \beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2,2}Q_{1}^{4}Q_{2}^{4}}$$

--Reconstruction

1. Reduce to Padé Approximants $F_{P\gamma\gamma}(0,0), \alpha_1, \beta_1, \beta_2 \rightarrow \text{from PAs}$

Reconstructing
$$F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$$

-Next element: $C_2^1(Q_1^2, Q_2^2)$

$$C_{2}^{1}(Q_{1}^{2}, Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0, 0)(1 + \alpha_{1}(Q_{1}^{2} + Q_{2}^{2}) + \alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1 + \beta_{1}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2}(Q_{1}^{4} + Q_{2}^{4}) + \beta_{1,1}Q_{1}^{2}Q_{2}^{2} + \beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2,2}Q_{1}^{4}Q_{2}^{4}}$$

--Reconstruction

1. Reduce to Padé Approximants $F_{P\gamma\gamma}(0,0), \alpha_1, \beta_1, \beta_2 \rightarrow \text{from PAs}$

Reconstructing
$$F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$$

-Next element: $C_2^1(Q_1^2, Q_2^2)$

$$C_{2}^{1}(Q_{1}^{2}, Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0, 0)(1 + \alpha_{1}(Q_{1}^{2} + Q_{2}^{2}) + \alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1 + \beta_{1}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2}(Q_{1}^{4} + Q_{2}^{4}) + \beta_{1,1}Q_{1}^{2}Q_{2}^{2} + \beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2,2}Q_{1}^{4}Q_{2}^{4}}$$

--Reconstruction

1.Reduce to Padé Approximants

2.Reproduce the OPE behavior (high energies)

$$F_{\pi\gamma^*\gamma^*} = \frac{1}{3Q^2} (2F_{\pi}) \left(1 - \frac{8}{9} \frac{\delta^2}{Q^2} + \mathcal{O}(\alpha_s(Q^2)) \right) \Rightarrow \beta_{2,2} = 0, \alpha_{1,1}, \beta_{2,1}$$

Reconstructing $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$

—Next element: $C_2^1(Q_1^2, Q_2^2)$

$$C_{2}^{1}(Q_{1}^{2}, Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0, 0)(1 + \alpha_{1}(Q_{1}^{2} + Q_{2}^{2}) + \alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1 + \beta_{1}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2}(Q_{1}^{4} + Q_{2}^{4}) + \beta_{1,1}Q_{1}^{2}Q_{2}^{2} + \beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2} + Q_{2}^{2})}$$
---Reconstruction

- 1. Reduce to Padé Approximants
- 2.Reproduce the OPE behavior (high energies)
- 3. Reproduce the low energies $(a_{P;1,1})$

Reconstructing $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$

-Next element: $C_2^1(Q_1^2, Q_2^2)$

$$C_{2}^{1}(Q_{1}^{2}, Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0, 0)(1 + \alpha_{1}(Q_{1}^{2} + Q_{2}^{2}) + \alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1 + \beta_{1}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2}(Q_{1}^{4} + Q_{2}^{4}) + \beta_{1,1}Q_{1}^{2}Q_{2}^{2} + \beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2} + Q_{2}^{2})}$$
---Reconstruction

- 1.Reduce to Padé Approximants
- 2.Reproduce the OPE behavior (high energies)
- 3. Reproduce the low energies $(a_{P;1,1})$ Be generous: all configurations with no poles $\Rightarrow a_{P;1,1}^{\min} < a_{P;1,1} < a_{P;1,1}^{\max}$

Reconstructing $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$

-Next element: $C_2^1(Q_1^2, Q_2^2)$

$$C_{2}^{1}(Q_{1}^{2}, Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0, 0)(1 + \alpha_{1}(Q_{1}^{2} + Q_{2}^{2}) + \alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1 + \beta_{1}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2}(Q_{1}^{4} + Q_{2}^{4}) + \beta_{1,1}Q_{1}^{2}Q_{2}^{2} + \beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2} + Q_{2}^{2})}$$
---Reconstruction

- 1.Reduce to Padé Approximants
- 2.Reproduce the OPE behavior (high energies)
- 3.Reproduce the low energies $(a_{P;1,1}^{\min} < a_{P;1,1} < a_{P;1,1}^{\max})$

Reconstructing $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$

-Next element: $C_2^1(Q_1^2, Q_2^2)$

$$C_{2}^{1}(Q_{1}^{2}, Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0, 0)(1 + \alpha_{1}(Q_{1}^{2} + Q_{2}^{2}) + \alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1 + \beta_{1}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2}(Q_{1}^{4} + Q_{2}^{4}) + \beta_{1,1}Q_{1}^{2}Q_{2}^{2} + \beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2} + Q_{2}^{2})}$$
---Reconstruction

- 1.Reduce to Padé Approximants
- 2.Reproduce the OPE behavior (high energies)
- 3. Reproduce the low energies $(a_{P;1,1}^{\min} < a_{P;1,1} < a_{P;1,1}^{\max})$

Low- and high energies implemented Full use of data and theory constraints Double-virtual data for $a_{P;1,1}$ (and δ^2) desirable Systematization up to required precision $(C_3^2(Q_1^2, Q_2^2) \rightarrow C_{N+1}^N(Q_1^2, Q_2^2))$

Pseudoscalar-pole contribution: Final results

 $-C^{0}(O^{2} O^{2})$

$c_1(\alpha_1, \alpha_2)$			
$a_{\mu}^{\mathrm{HLbL};P} imes 10^{11}$ OPE $(a_{P;1,1} = 2b_{P}^{2})$		$Fact\;(a_{P;1,1}=b_P^2)$	
$\begin{array}{ccc} \pi^0 & 65.3(1.4)_F(2.4)_{b_\pi}[2.8]_t \\ \eta & 17.1(0.6)_F(0.2)_{b_\eta}[0.6]_t \\ \eta' & 16.0(0.5)_F(0.3)_{b_{\eta'}}[0.6]_t \end{array}$		$\begin{array}{l} 54.3(1.5)_F(2.2)_{b_\pi}[2.5]_t\\ 13.0(0.4)_F(0.2)_{b_\eta}[0.5]_t\\ 12.0(0.4)_F(0.3)_{b_{\eta'}}[0.5]_t\end{array}$	
Total	98.4[2.9] _t	79.3[2.6] _t	

P. Masjuan & P. Sanchez Phys.Rev. D95, 054026 (2017)

Pseudoscalar-pole contribution: Final results

 $-C_1^0(Q_1^2, Q_2^2)$ -

$a_{\mu}^{\mathrm{HLbL};P} \times 10^{11}$	$OPE\; (a_{P;1,1} = 2b_P^2)$	$Fact\;(a_{P;1,1}=b_P^2)$
π^0 η η'	$\begin{array}{c} 65.3(1.4)_F(2.4)_{b_\pi}[2.8]_t\\ 17.1(0.6)_F(0.2)_{b_\eta}[0.6]_t\\ 16.0(0.5)_F(0.3)_{b_{\eta'}}[0.6]_t\end{array}$	$\begin{array}{c} 54.3(1.5)_F(2.2)_{b_{\pi}}[2.5]_t\\ 13.0(0.4)_F(0.2)_{b_{\eta}}[0.5]_t\\ 12.0(0.4)_F(0.3)_{b_{\eta'}}[0.5]_t\end{array}$
Total	98.4[2.9] _t	79.3[2.6] _t

$-C_2^1(Q_1^2, Q_2^2)$ -

$a_{\mu}^{\mathrm{HLbL};P} \times 10^{11}$	$a_{P;1,1}^{\min}$	$a_{P;1,1}^{\max}$
π^0	$64.1(1.3)_L(0)_{\delta}[1.3]_t$	$63.0(1.1)_L(0.5)_{\delta}[1.2]_t$
η	$16.3(0.8)_L(0)_{\delta}[0.8]_t$	$16.2(0.8)_L(0.6)_{\delta}[1.0]_t$
η'	$14.7(0.7)_L(0)_{\delta}[0.7]_t$	$14.3(0.5)_L(0.5)_{\delta}[0.7]_t$
Total	$95.1[1.7]_t$	93.5[1.7] _t

Pseudoscalar-pole contribution: Final results

 $-C_1^0(Q_1^2, Q_2^2)$ -

$a_{\mu}^{\mathrm{HLbL};P} \times 10^{11}$	OPE $(a_{P;1,1} = 2b_P^2)$	$Fact\;(a_{P;1,1}=b_P^2)$
π^0	$65.3(1.4)_F(2.4)_{b_{\pi}}[2.8]_t$	$54.3(1.5)_F(2.2)_{b_{\pi}}[2.5]_t$
η	$17.1(0.6)_F(0.2)_{b_{\eta}}[0.6]_t$	$13.0(0.4)_F(0.2)_{b_{\eta}}[0.5]_t$
η'	$16.0(0.5)_F(0.3)_{b_{\eta'}}[0.6]_t$	$12.0(0.4)_F(0.3)_{b_{\eta'}}[0.5]_t$
Total	$98.4[2.9]_t$	79.3[2.6] _t

$-C_2^1(Q_1^2, Q_2^2)$ -

$a_{\mu}^{\mathrm{HLbL};P} \times 10^{11}$	$a_{P;1,1}^{\min}$	$a_{P;1,1}^{\max}$	
π^0	$64.1(1.3)_L(0)_{\delta}[1.3]_t\{1.2\}_{sys}$	$63.0(1.1)_{L}(0.5)_{\delta}[1.2]_{t}\{2.3\}_{sys}$	
$\eta \eta'$	$16.3(0.8)_L(0)_{\delta}[0.8]_t$ $14.7(0.7)_L(0)_{\delta}[0.7]_t$	$16.2(0.8)_L(0.6)_{\delta}[1.0]_t$ $14.3(0.5)_L(0.5)_{\delta}[0.7]_t$	
Total	$95.1[1.7]_t$	93.5[1.7] _t	

Pseudoscalar-pole contribution: Final results

 $-C_1^0(Q_1^2, Q_2^2)$ -

$a_{\mu}^{\mathrm{HLbL};P} \times 10^{11}$	$OPE\; (a_{P;1,1} = 2b_P^2)$	$Fact\;(a_{P;1,1}=b_P^2)$
π^0 η η'	$\begin{array}{c} 65.3(1.4)_F(2.4)_{b_\pi}[2.8]_t\\ 17.1(0.6)_F(0.2)_{b_\eta}[0.6]_t\\ 16.0(0.5)_F(0.3)_{b_{\eta'}}[0.6]_t\end{array}$	$\begin{array}{c} 54.3(1.5)_F(2.2)_{b_{\pi}}[2.5]_t\\ 13.0(0.4)_F(0.2)_{b_{\eta}}[0.5]_t\\ 12.0(0.4)_F(0.3)_{b_{\eta'}}[0.5]_t\end{array}$
Total	98.4[2.9] _t	79.3[2.6] _t

$-C_2^1(Q_1^2, Q_2^2)$ -

12				
	$a_{\mu}^{\rm HLbL; \textit{P}} \times 10^{11}$	$a_{P;1,1}^{\min}$	$a_{P;1,1}^{\max}$	
	π^0	$64.1(1.3)_L(0)_{\delta}[1.3]_t\{1.2\}_{sys}$	$63.0(1.1)_{L}(0.5)_{\delta}[1.2]_{t}\{2.3\}_{sys}$	
	η	$16.3(0.8)_L(0)_{\delta}[0.8]_t \{0.8\}_{sys}$	$16.2(0.8)_L(0.6)_{\delta}[1.0]_t\{0.9\}_{sys}$	
	η'	$14.7(0.7)_L(0)_{\delta}[0.7]_t\{1.3\}_{sys}$	$14.3(0.5)_L(0.5)_{\delta}[0.7]_t\{1.7\}_{sys}$	
1	Total	$95.1[1.7]_t \{3.3\}_{sys}$	$93.5[1.7]_t \{4.9\}_{sys}$	

Pseudoscalar-pole contribution: Final results

 $-C_{1}^{0}(\Omega_{1}^{2},\Omega_{2}^{2})-$

-1(-1)-2/			
$a_{\mu}^{\mathrm{HLbL};P} imes 10^{11}$ OPE $(a_{P;1,1} = 2b_P^2)$		$Fact\; \left(a_{P;1,1} = b_P^2\right)$	
π^0 η η'	$\begin{array}{l} 65.3(1.4)_F(2.4)_{b_\pi}[2.8]_t\\ 17.1(0.6)_F(0.2)_{b_\eta}[0.6]_t\\ 16.0(0.5)_F(0.3)_{b_{\eta'}}[0.6]_t\end{array}$	$\begin{array}{l} 54.3(1.5)_F(2.2)_{b_{\pi}}[2.5]_t\\ 13.0(0.4)_F(0.2)_{b_{\eta}}[0.5]_t\\ 12.0(0.4)_F(0.3)_{b_{\eta'}}[0.5]_t\end{array}$	
Total	98.4[2.9] _t	$79.3[2.6]_t$	

 $-C_2^1(Q_1^2, Q_2^2)$ -

$a_{\mu}^{\mathrm{HLbL};P} \times 10^{11}$	$a_{P;1,1}^{\min}$	$a_{P;1,1}^{\max}$
π^0	$64.1(1.3)_L(0)_{\delta}[1.3]_t\{1.2\}_{sys}$	$63.0(1.1)_{L}(0.5)_{\delta}[1.2]_{t}\{2.3\}_{sys}$
η	$16.3(0.8)_L(0)_{\delta}[0.8]_t\{0.8\}_{sys}$	$16.2(0.8)_L(0.6)_{\delta}[1.0]_t\{0.9\}_{sys}$
η'	$14.7(0.7)_L(0)_{\delta}[0.7]_t\{1.3\}_{sys}$	$14.3(0.5)_L(0.5)_{\delta}[0.7]_t\{1.7\}_{sys}$
Total	$95.1[1.7]_t \{3.3\}_{sys}$	$93.5[1.7]_t \{4.9\}_{sys}$

--Final Result (combining errors just for clarity) $a_{\mu}^{\pi,\eta,\eta'} = (63.6(2.7) + 16.3(1.3) + 14.5(1.8)) \times 10^{-11} = 94.3(5.3) \times 10^{-11}$

Pseudoscalar-pole contribution: Final results

 $-C_{1}^{0}(\Omega_{1}^{2},\Omega_{2}^{2})-$

-1(-1)-2)			
$a_{\mu}^{\mathrm{HLbL};P} imes 10^{11}$ OPE $(a_{P;1,1} = 2b_{P}^{2})$		$Fact\; \left(a_{P;1,1} = b_P^2\right)$	
π^0 η η'	$\begin{array}{l} 65.3(1.4)_F(2.4)_{b_\pi}[2.8]_t\\ 17.1(0.6)_F(0.2)_{b_\eta}[0.6]_t\\ 16.0(0.5)_F(0.3)_{b_{\eta'}}[0.6]_t\end{array}$	$\begin{array}{l} 54.3(1.5)_F(2.2)_{b_\pi}[2.5]_t\\ 13.0(0.4)_F(0.2)_{b_\eta}[0.5]_t\\ 12.0(0.4)_F(0.3)_{b_{\eta'}}[0.5]_t\end{array}$	
Total	98.4[2.9] _t	79.3[2.6] _t	

 $-C_2^1(Q_1^2, Q_2^2)$ -

$a_{\mu}^{\mathrm{HLbL};P} \times 10^{11}$	$a_{P;1,1}^{\min}$	$a_{P;1,1}^{\max}$
π^0	$64.1(1.3)_L(0)_{\delta}[1.3]_t\{1.2\}_{sys}$	$63.0(1.1)_{L}(0.5)_{\delta}[1.2]_{t}\{2.3\}_{sys}$
η	$16.3(0.8)_L(0)_{\delta}[0.8]_t\{0.8\}_{sys}$	$16.2(0.8)_L(0.6)_{\delta}[1.0]_t\{0.9\}_{sys}$
η'	$14.7(0.7)_L(0)_{\delta}[0.7]_t\{1.3\}_{sys}$	$14.3(0.5)_L(0.5)_{\delta}[0.7]_t\{1.7\}_{sys}$
Total	$95.1[1.7]_t \{3.3\}_{sys}$	$93.5[1.7]_t \{4.9\}_{sys}$

--Final Result (combining errors just for clarity) $a_{\mu}^{\pi,\eta,\eta'} = (63.6(2.7) + 16.3(1.3) + 14.5(1.8)) \times 10^{-11} = 94.3(5.3) \times 10^{-11}$

What has been achieved?

P. Masjuan & P. Sanchez Phys.Rev. D95, 054026 (2017)

____ Final Updated Result ______ $\delta a_{\mu}^{\mathrm{exp}} = 16 \times 10^{-11}$ _____

$$a_{\mu}^{\pi,\eta,\eta'} = (63.6(2.7) + 16.3(1.3) + 14.5(1.8)) imes 10^{-11} = 94.3(5.3) imes 10^{-11}$$

- Updated value —incl. systematics— meets future exp. precision
- η and η' deserve an appropriate description!
- Full use of experimental dataset

Knecht & Nyffeler: Phys.Rev., D65, 073034 (2002); R_{\chi}PT: Phys.Rev., D89, 073016 (2014)

____ Final Updated Result ______ $\delta a_{\mu}^{\mathrm{exp}} = 16 \times 10^{-11}$ _____

$$a_{\mu}^{\pi,\eta,\eta'} = (63.6(2.7) + 16.3(1.3) + 14.5(1.8)) imes 10^{-11} = 94.3(5.3) imes 10^{-11}$$

- Updated value —incl. systematics— meets future exp. precision
- η and η' deserve an appropriate description!
- Full use of experimental dataset

____ Previous Knecht & Nyffeler Result ______ $\delta a_{\mu}^{exp} = 16 \times 10^{-11}$ ____

$$a^{\pi,\eta,\eta'}_{\mu} = (58(10) + 13(1) + 12(1)) imes 10^{-11} = 83(12) imes 10^{-11}$$

- Intended for $\delta a_{\mu} = 63 \times 10^{-11}$; no systematics ($N_c \rightarrow 30\%$?)
- η and η' oversimplified description (OPE $\rightarrow \delta a_{\mu} \sim -5 \times 10^{-11}$)
- Old data-base

Knecht & Nyffeler: Phys.Rev., D65, 073034 (2002); RXPT: Phys.Rev., D89, 073016 (2014)

____ Final Updated Result ______ $\delta a_{\mu}^{\mathrm{exp}} = 16 \times 10^{-11}$ _____

$$a_{\mu}^{\pi,\eta,\eta'}=(63.6(2.7)+16.3(1.3)+14.5(1.8)) imes 10^{-11}=94.3(5.3) imes 10^{-11}$$

- Updated value —incl. systematics— meets future exp. precision
- η and η' deserve an appropriate description!
- Full use of experimental dataset

____ Recent R χ PT Result _____ $\delta a_{\mu}^{\exp} = 16 \times 10^{-11}$ ____

$$a_{\mu}^{\pi,\eta,\eta'} = (57.5(0.6) + 14.4(2.6) + 10.8(0.9)) imes 10^{-11} = 82.7(2.8) imes 10^{-11}$$

- Estimation of NLO corrections (syst. error) missing ($N_c \rightarrow 30\%$?)
- No data used for the η, η' , but mixing+SU(3)-symmetry
- Cannot reproduce all HE constraints

Knecht & Nyffeler: Phys.Rev., D65, 073034 (2002); RXPT: Phys.Rev., D89, 073016 (2014)

Updated pseudoscalar pole contribution

____ Final Updated Result ______ $\delta a_{\mu}^{exp} = 16 \times 10^{-11}$ _____

 $a_{\mu}^{\pi,\eta,\eta'} = (63.6(2.7) + 16.3(1.3) + 14.5(1.8)) \times 10^{-11} = 94.3(5.3) \times 10^{-11}$

$a_{\mu}^{\mathrm{HLbL};P} \times 10^{11}$	OPE $(a_{P;1,1} = 2b_P^2)$	$a_{P;1,1}^{\min}$	$a_{P;1,1}^{\max}$
π^0	$65.3(1.4)_F(2.4)_{b_{\pi}}[2.8]_t$	$64.1(1.3)_L(0)_{\delta}[1.3]_t\{1.2\}_{sys}$	$63.0(1.1)_L(0.5)_{\delta}[1.2]_t\{2.3\}_{sys}$
η	$17.1(0.6)_F(0.2)_{b_{\eta}}[0.6]_t$	$16.3(0.8)_L(0)_{\delta}[0.8]_t\{0.8\}_{sys}$	$16.2(0.8)_L(0.6)_{\delta}[1.0]_t\{0.9\}_{sys}$
η'	$16.0(0.5)_F(0.3)_{b_{\eta'}}[0.6]_t$	$14.7(0.7)_L(0)_{\delta}[0.7]_t\{1.3\}_{sys}$	$14.3(0.5)_L(0.5)_{\delta}[0.7]_t\{1.7\}_{sys}$
Total	98.4[2.9] _t	$95.1[1.7]_t \{3.3\}_{sys}$	$93.5[1.7]_t \{4.9\}_{sys}$

____ Future improvements expected ______

- Main stat. from π^0 $b_{\pi} \simeq F_{\pi\gamma\gamma} \simeq \text{DV} \gg \text{BL}$ BES III & GlueX & KLOE-2 KLOE-2 & PrimEx BES III BES III & Belle II • Then η, η' important $F_{P\gamma\gamma} \gtrsim b_P \simeq DV \simeq BL$

GlueX BES III & A2 — Belle II

Knecht & Nyffeler: Phys.Rev., D65, 073034 (2002); RXPT: Phys.Rev., D89, 073016 (2014)

Updated pseudoscalar pole contribution

____ Final Updated Result ______ $\delta a_{\mu}^{exp} = 16 \times 10^{-11}$ _____

 $a_{\mu}^{\pi,\eta,\eta'} = (63.6(2.7) + 16.3(1.3) + 14.5(1.8)) \times 10^{-11} = 94.3(5.3) \times 10^{-11}$

$a_{\mu}^{\mathrm{HLbL};P} \times 10^{11}$	$OPE(a_{P;1,1} = 2b_P^2)$	$a_{P;1,1}^{\min}$	$a_{P;1,1}^{\max}$
π^0	$65.3(1.4)_F(2.4)_{b_{\pi}}[2.8]_t$	$64.1(1.3)_L(0)_{\delta}[1.3]_t\{1.2\}_{sys}$	$63.0(1.1)_L(0.5)_{\delta}[1.2]_t\{2.3\}_{sys}$
η	$17.1(0.6)_F(0.2)_{b_\eta}[0.6]_t$	$16.3(0.8)_L(0)_\delta[0.8]_t\{0.8\}_{sys}$	$16.2(0.8)_L(0.6)_{\delta}[1.0]_t\{0.9\}_{sys}$
η΄	$16.0(0.5)_F(0.3)_{b_{\eta'}}[0.6]_t$	$14.7(0.7)_L(0)_{\delta}[0.7]_t\{1.3\}_{sys}$	$14.3(0.5)_L(0.5)_{\delta}[0.7]_t\{1.7\}_{sys}$
Total	98.4[2.9] _t	$95.1[1.7]_t \{3.3\}_{sys}$	$93.5[1.7]_t \{4.9\}_{sys}$

____ Future improvements expected ______

- Main stat. from π^0 $b_{\pi} \simeq F_{\pi\gamma\gamma} \simeq \text{DV} \gg \text{BL}$ BES III & GlueX & KLOE-2 KLOE-2 & PrimEx BES III BES III & Belle II
- Then η, η' important $F_{P\gamma\gamma} \gtrsim b_P \simeq DV \simeq BL$ GlueX BES III & A2 — Belle II

___ Interesting paths ____

• $P \rightarrow \overline{\ell} \ell \& P \rightarrow \overline{\ell} \ell \overline{\ell}' \ell'$

NA62 for π LHCb & Redtop for η, η' ?

Knecht & Nyffeler: Phys.Rev., D65, 073034 (2002); RXPT: Phys.Rev., D89, 073016 (2014)

Summary & Outlook

- Systematic data-driven TFF description [Canterbury approximants]
- Full use of SL and low-energy TL data + theory constraints
- New value $a_{\mu}^{HLbL;\pi,\eta,\eta'} = 94.3(5.3) imes 10^{-11}$ including systematics
- Error meets future experiments $\delta a_{\mu} \sim 16 imes 10^{-11}$ requirements
- Forthcoming improvements: BESIII, KLOE2, GlueX, PrimEx, BelleII
- $P \rightarrow \bar{\ell}\ell, \bar{\ell}\ell\bar{\ell}'\ell'$ of help too (the only η, η' double-virtual probes?)

Backup

Section 4

Backup

Pseudoscalar-pole contribution to $(g_{\mu} - 2)$: a rational approach $P \rightarrow \tilde{\ell} \ell$ decays: further information and new physics

Section 5

$P ightarrow ar{\ell}\ell$ decays: further information and new physics

 $P \rightarrow \bar{\ell}\ell$ decays: further information and new physics

$P \to \bar{\ell} \ell$ decays: a brief introduction

- Probes the (double virtual) TFF
- Clean check assuming no NP
- Alternatively, deviation \rightarrow NP

 $P \rightarrow \bar{\ell}\ell$ decays: further information and new physics

$P \rightarrow \bar{\ell}\ell$ decays: a brief introduction

$$\mathcal{A}(q^2) = \frac{2i}{\pi^2 q^2} \int d^4k \frac{\left(k^2 q^2 - (k \cdot q)^2\right) \tilde{F}_{P\gamma^*\gamma^*}(k^2, (q-k)^2)}{k^2 (q-k)^2 \left((p-k)^2 - m_{\ell}^2\right)}$$

- The process is low-energy dominated
- UV divergent for a constant TFF

 $P \rightarrow \overline{\ell} \ell$ decays: further information and new physics

$P \rightarrow \bar{\ell}\ell$ decays: a brief introduction

$$\mathcal{A}(q^2) = \frac{2i}{\pi^2 q^2} \int d^4k \frac{\left(k^2 q^2 - (k \cdot q)^2\right) \tilde{F}_{P\gamma^*\gamma^*}(k^2, (q-k)^2)}{k^2 (q-k)^2 \left((p-k)^2 - m_\ell^2\right)}$$

Ideal case for our approach

Previous comments apply to this case, but novelties ...

•
$$-m_P^2 \leq Q^2 \leq \infty$$
: care with η and η'

• Frequent employed approximations do not apply to the η,η'

Pseudoscalar-pole contribution to $(g_{\mu} - 2)$: a rational approach $P \rightarrow \bar{\ell}\ell$ decays: further information and new physics

Additional systematics

We must deal with a new feature: hadronic thresholds

No previous studies about threshold effects on $P
ightarrow ar{\ell} \ell$ decays

- (1) Can our approach deal with it?
- (2) Associated systematic error?

Pseudoscalar-pole contribution to $(g_{\mu} - 2)$: a rational approach $P \rightarrow \bar{\ell}\ell$ decays: further information and new physics

Additional systematics

We must deal with a new feature: hadronic thresholds

No previous studies about threshold effects on $P \rightarrow \overline{\ell} \ell$ decays

- (1) Can our approach deal with it?
- (2) Associated systematic error?

Factorized ansatz
$$\tilde{F}_{P\gamma^*\gamma}(q_1^2, q_2^2) = \tilde{F}_{P\gamma^*\gamma}(q_1^2) \times \tilde{F}_{P\gamma^*\gamma}(q_2^2)$$

 $\tilde{F}_{P\gamma^*\gamma}(s) = c_{P\rho}G_{\rho}(s) + c_{P\omega}G_{\omega}(s) + c_{P\phi}G_{\phi}(s)$

With $G_V(s)$ fulfilling appropriate analytic and unitary constraints

Pseudoscalar-pole contribution to $(g_{\mu} - 2)$: a rational approach $P \rightarrow \overline{\ell}\ell$ decays: further information and new physics

Additional systematics

We must deal with a new feature: hadronic thresholds

No previous studies about threshold effects on $P
ightarrow ar{\ell} \ell$ decays

(1) Can our approach deal with it?(2) Associated systematic error?

$$\mathcal{G}_{
ho}(s) = rac{M_{
ho}^2}{M_{
ho}^2 - s + rac{sM_{
ho}^2}{96\pi^2 F_{\pi}^2} \left(\ln\left(rac{m_{\pi}^2}{\mu^2}
ight) + rac{8m_{\pi}^2}{s} - rac{5}{3} - \sigma(s)^3 \ln\left(rac{\sigma(s) - 1}{\sigma(s) + 1}
ight)
ight)}$$

D. Gomez Dumm, A. Pich, J. Portoles '00

Pseudoscalar-pole contribution to $(g_{\mu} - 2)$: a rational approach $P \rightarrow \overline{\ell}\ell$ decays: further information and new physics

Additional systematics

We must deal with a new feature: hadronic thresholds

No previous studies about threshold effects on $P \rightarrow \overline{\ell} \ell$ decays

(1) Can our approach deal with it? It works for the loop integral(2) Associated systematic error?

Pseudoscalar-pole contribution to $(g_{\mu} - 2)$: a rational approach $P \rightarrow \bar{\ell}\ell$ decays: further information and new physics

Additional systematics

We must deal with a new feature: hadronic thresholds

No previous studies about threshold effects on $P \rightarrow \overline{\ell} \ell$ decays

(1) Can our approach deal with it? It works for the loop integral(2) Associated systematic error? From realistic unitary model

$BR(P \rightarrow \ell \ell)$	toy model	C_{1}^{0}	Error (%)
$(\eta ightarrow ee) imes 10^{-9}$	5.410	5.418	0.16
$(\eta ightarrow \mu \mu) imes 10^{-6}$	4.494	4.527	0.74
$(\eta' ightarrow ee) imes 10^{-10}$	1.705	1.883	9
$(\eta' ightarrow \mu \mu) imes 10^{-7}$	1.195	1.461	18

(3) Final systematic eror: Stat + Syst + Threshold

Pseudoscalar-pole contribution to $(g_{\mu} - 2)$: a rational approach $P \rightarrow \bar{\ell}\ell$ decays: further information and new physics

Final Results

BR	Our result (OPE÷Fact)	Approx	Exp
$\pi^{0} ightarrow e^{+}e^{-} imes 10^{8}$	$(6.20 \div 6.35)(4)$	$(6.17 \div 6.31)$	7.48(38)
$\eta ightarrow e^+ e^- imes 10^9 \ \eta ightarrow \mu^+ \mu^- imes 10^6$	$(5.31 \div 5.44)(4)$ $(4.72 \div 4.52)(5)$	$(4.58 \div 4.68)$ $(5.16 \div 4.88)$	$\begin{array}{l} \leq 2.3 \times 10^3 \\ 5.8(8) \end{array}$
$\eta' ightarrow e^+ e^- imes 10^{10} \ \eta' ightarrow \mu^+ \mu^- imes 10^7$	$(1.82 \div 1.87)(18) \\ (1.36 \div 1.49)(26)$	$(1.22 \div 1.24)$ $(1.42 \div 1.41)$	≤ 56 -

P. Masjuan, P. Sanchez, JHEP 1608 (2016) 108
Pseudoscalar-pole contribution to $(g_{\mu} - 2)$: a rational approach $P \rightarrow \bar{\ell}\ell$ decays: further information and new physics

Final Results

BR	Our result (OPE÷Fact)	Approx	Exp
$\pi^{0} ightarrow e^{+}e^{-} imes 10^{8}$	$(6.20 \div 6.35)(4)$	$(6.17 \div 6.31)$	7.48(38)
$\eta ightarrow e^+ e^- imes 10^9 \ \eta ightarrow \mu^+ \mu^- imes 10^6$	$(5.31 \div 5.44)(4)$ $(4.72 \div 4.52)(5)$	$(4.58 \div 4.68)$ $(5.16 \div 4.88)$	$\frac{\leq 2.3\times 10^3}{5.8(8)}$
$\eta' ightarrow e^+ e^- imes 10^{10} \ \eta' ightarrow \mu^+ \mu^- imes 10^7$	$(1.82 \div 1.87)(18) \ (1.36 \div 1.49)(26)$	$(1.22 \div 1.24)$ $(1.42 \div 1.41)$	≤ 56 -

• Approximate results \Rightarrow large systematics; similar for LO χ PT

P. Masjuan, P. Sanchez, JHEP 1608 (2016) 108

Pseudoscalar-pole contribution to $(g_{\mu} - 2)$: a rational approach $P \rightarrow \bar{\ell}\ell$ decays: further information and new physics

Final Results

BR	Our result (OPE÷Fact)	Approx	Exp
$\pi^{0} ightarrow e^{+}e^{-} imes 10^{8}$	$(6.20 \div 6.35)(4)$	$(6.17 \div 6.31)$	7.48(38) 3σ
$\eta ightarrow e^+ e^- imes 10^9 \ \eta ightarrow \mu^+ \mu^- imes 10^6$	$(5.31 \div 5.44)(4)$	$(4.58 \div 4.68)$	$\leq 2.3 imes 10^3$
	$(4.72 \div 4.52)(5)$	$(5.16 \div 4.88)$	5.8(8) 1.3 σ
$\eta' ightarrow e^+ e^- imes 10^{10} \ \eta' ightarrow \mu^+ \mu^- imes 10^7$	$(1.82 \div 1.87)(18)$	$(1.22 \div 1.24)$	≤ 56
	$(1.36 \div 1.49)(26)$	$(1.42 \div 1.41)$	-

• Approximate results \Rightarrow large systematics; similar for LO χ PT

P. Masjuan, P. Sanchez, JHEP 1608 (2016) 108

Pseudoscalar-pole contribution to $(g_{\mu} - 2)$: a rational approach $P \rightarrow \bar{\ell}\ell$ decays: further information and new physics

Final Results

BR	Our result (OPE÷Fact)	Approx	Exp
$\pi^{0} ightarrow e^{+}e^{-} imes 10^{8}$	$(6.20 \div 6.35)(4)$	$(6.17 \div 6.31)$	6.87(36) 1.8 σ
$\eta ightarrow e^+ e^- imes 10^9 \ \eta ightarrow \mu^+ \mu^- imes 10^6$	$(5.31 \div 5.44)(4)$ $(4.72 \div 4.52)(5)$	$(4.58 \div 4.68)$ $(5.16 \div 4.88)$	$\leq 2.3 imes 10^3 \ 5.8(8) \ 1.3\sigma$
$\eta' ightarrow e^+ e^- imes 10^{10} \ \eta' ightarrow \mu^+ \mu^- imes 10^7$	$(1.82 \div 1.87)(18)$ $(1.36 \div 1.49)(26)$	$(1.22 \div 1.24)$ $(1.42 \div 1.41)$	≤ 56 -

- Approximate results \Rightarrow large systematics; similar for LO χ PT
- Recent RC studies imply lower BR for π^0 [T. Husek, K. Kampf, J. Novotny, '14; P. Vasko, J. Novotny '11]

P. Masjuan, P. Sanchez, JHEP 1608 (2016) 108

Pseudoscalar-pole contribution to $(g_{\mu} - 2)$: a rational approach Double Dalitz Decays

Section 6

Double Dalitz Decays

Pseudoscalar-pole contribution to $(g_{\mu}-2)$: a rational approach

Double Dalitz Decays

Double Dalitz decays

Phase space probed (timelike)

$$\begin{array}{l} 2m_\ell \leq q_1 \leq m_P - 2m_{\ell'} \\ 2m_{\ell'} \leq q_2 \leq m_P - q_1 \end{array}$$

Form factor from Exp/QED

Pseudoscalar-pole contribution to $(g_{\mu}-2)$: a rational approach

Double Dalitz Decays

Double Dalitz decays

Naive SL extrapolation

Double Dalitz Decays

Double Dalitz decays

Naive SL extrapolation $W_1(Q_1, Q_2, 0)$ $w_1(Q_1, Q_2, 0)$ $W_1(Q_1, Q_2, 0)$ 0.25 0.6 3 0.4 2 0.15 1 0.2 0.8 2.0 0.05 0.0 0.6 0.0 1.5 0.4Q2 (GeV) .00, (GeV) Q_2 (GeV) $Q_1 (\text{GeV})^{1,0}$ $Q_1 (\text{GeV})^{0.4}$ Q1 (GeV π^0 0.6 n 0.8 0.0 2.0 0.0

Previous results

Perrson 0106130 (2001) VMD, T. Petri 1010.2378 (2010) VMD, C.C. Lih JPhys G38 (2011) LF pQCD, C. Terschlüssen *et al* EPJ A49 (2013) *R*_X*PT*, R. Escribano *et al* 1511.04916 (2015) PAs, Weil *et al* 1704.06046 (2017) DSE

Essentially the FF effect is ...

$$\begin{aligned} \pi^{0} \rightarrow 2e^{+}2e^{-} & \Rightarrow 0.5\% \quad \eta \rightarrow 2e^{+}2e^{-} & \Rightarrow 5\% \quad \eta' \rightarrow 2e^{+}2e^{-} & \Rightarrow 25\% \\ \eta \rightarrow e^{+}e^{-}\mu^{+}\mu^{-} & \Rightarrow 40\% \quad \eta' \rightarrow e^{+}e^{-}\mu^{+}\mu^{-} & \Rightarrow 130\% \\ \eta \rightarrow 2\mu^{+}2\mu^{-} & \Rightarrow 60\% \quad \eta' \rightarrow 2\mu^{+}2\mu^{-} & \Rightarrow 130\% \end{aligned}$$

Double Dalitz Decays

Double Dalitz decays

Naive SL extrapolation $W_1(Q_1, Q_2, 0)$ $W_1(Q_1, Q_2, 0)$ $W_1(Q_1, Q_2, 0)$ 0.25 0.6 3 0.4 0.15 1 0.2 0.8 2.0 0.05 0.0 0.6 0.0 1.5 0.4Q2 (GeV) 002 (GeV) Q2 (GeV) $Q_1 (\text{GeV})^{1.0}$ $Q_1 (\text{GeV})^{0.4}$ Q1 (GeV 0.6 n 0.8 0.0 2.0 0.0 Previous results

Perrson 0106130 (2001) VMD, T. Petri 1010.2378 (2010) VMD, C.C. Lih JPhys G38 (2011) LF pQCD, C. Terschlüssen *et al* EPJ A49 (2013) *R*_X*PT*, R. Escribano *et al* 1511.04916 (2015) PAs, Weil *et al* 1704.06046 (2017) DSE

Essentially the FF effect is ... provided RC under control!

$$\begin{aligned} \pi^{0} \rightarrow 2e^{+}2e^{-} & \Rightarrow 0.5\% \quad \eta \rightarrow 2e^{+}2e^{-} & \Rightarrow 5\% \quad \eta' \rightarrow 2e^{+}2e^{-} & \Rightarrow 25\% \\ \eta \rightarrow e^{+}e^{-}\mu^{+}\mu^{-} & \Rightarrow 40\% \quad \eta' \rightarrow e^{+}e^{-}\mu^{+}\mu^{-} & \Rightarrow 130\% \\ \eta \rightarrow 2\mu^{+}2\mu^{-} & \Rightarrow 60\% \quad \eta' \rightarrow 2\mu^{+}2\mu^{-} & \Rightarrow 130\% \end{aligned}$$

Pseudoscalar-pole contribution to $(g_{\mu} - 2)$: a rational approach Double Dalitz Decays

Double Dalitz decays

Radiative corrections so far

A.R. Barker et al PRD 67 033008 (2003), including

Pseudoscalar-pole contribution to $(g_{\mu}-2)$: a rational approach Double Dalitz Decays

Double Dalitz decays

Radiative corrections so far

A.R. Barker et al PRD 67 033008 (2003), including

Motivations for new study

- Cross-check always welcomed
- Incorrect F_2 "factorization" in $\overline{\ell}\Gamma^{\mu}\ell$
- Bremsstrahlung typo/mistake?

Pseudoscalar-pole contribution to $(g_{\mu}-2)$: a rational approach Double Dalitz Decays

Double Dalitz decays

Radiative corrections so far

A.R. Barker et al PRD 67 033008 (2003), including

Motivations for new study

- Cross-check always welcomed
- Incorrect F_2 "factorization" in $\overline{\ell}\Gamma^{\mu}\ell$
- Bremsstrahlung typo/mistake?
- Additional diagrams missing

Double Dalitz decays

Current status (in coll. with K. Kampf & J. Novotny)

- F_2 "factorization" \Rightarrow Negligible (F_2 -correction tiny itself)
- Analytical results (all but 5-point) \Rightarrow Ok (but bremsstrahlung)
- Numerical checks very similar
- 3-point NEW contribution ready: small if $\ell = e$; FF important
- 4-point NEW contribution in progress

Future

- Prepare a MC generator (NA62)?
- Interest in crossed process $e^+e^- \rightarrow e^+e^-P$?

Double Dalitz decays (PRELIMINARY!)

Current status (in coll. with K. Kampf & J. Novotny)

- F_2 "factorization" \Rightarrow Negligible (F_2 -correction tiny itself)
- Analytical results (all but 5-point) \Rightarrow Ok (but BS)
- Bremsstrahlung: typo/mistake? \Rightarrow Numerically ($K_L \rightarrow e^+e^-\mu^+\mu^-$)

Premiliminary results for const. FF and $x_{4e}^{cut} = 0.9985$

	$\pi^{\rm 0} \rightarrow 2e^- 2e^+$	$K_L ightarrow 2e^- 2e^+$	${\cal K}_L ightarrow { m e}^- { m e}^+ \mu^+ \mu^-$	$K_L ightarrow 2\mu^+ 2\mu^-$
$\overline{\delta}(Old)\ \delta(New)\ \overline{\delta}(New)?$	-0.1948	-0.2618	-0.0788	0.0805
	-0.1716(2)	-0.2286(2)	-0.0767(1)	0.0705
	-0.2072(3)	-0.2964(4)	-0.0831(1)	0.0657

Relation $\overline{\delta}$ and δ ; is it $\overline{\delta} \simeq \delta (1 + \delta)^{-1}$?? (or at least lower bound)

Additional diagrams

- 3-point \Rightarrow Negligible for $\ell = \ell' = e$ (\sim helicity-suppression): $\delta_{0.77} \rightarrow \{-0.0003, -0.0004, 0.0005, 3 \times 10^{-5}\}$ (but FF-dep.!)
- 4-point \Rightarrow Work in progress

TAKE IT WITH CAUTION: TOUGH REVISION AHEAD!