

$\gamma\gamma$ Physics Program at BESIII

June 5, 2017 | Christoph Florian Redmer

First Workshop of the Muon g-2 Theory Initiative

Two-Photon Collisions

- Exchange of two photons in e⁺e⁻ collisions
- Pseudoscalar, axial, and tensor states accessible
- M_x << √s</p>
- $\sigma \propto \alpha^2 \ln^2 E$
- ${\color{red} \bullet} \ \sigma \propto F^2(Q_1^2,Q_2^2)$, with $Q_i^2=-q_i^2$
- Forward peaked kinematic
 - Experimentally challenging
 - Untagged measurements
 - Single-tagged measurements
 - Double-tagged measurements

BESIII Detector

Operated at BEPCII collider

- $2.0 \le \sqrt{s} \ [\text{GeV}] \le 4.6$
- Design luminosity achieved

•
$$\mathcal{L} = 1.0 \times 10^{33} \text{cm}^{-2} \text{s}^{-1} \text{ at } \psi(3770)$$

- Large data sets for
 - Charmonium Spectroscopy
 - Charm Physics
 - Light hadrons
 - τ and R-Scan

NIM A614 (2010) 345

- Main Drift Chamber (MDC)
 - $\sigma(p)/p = 0.5\%$
 - $\sigma_{\text{dE/dx}} = 6.0\%$
- Time-of-flight system (TOF)
 - $\sigma(t) = 90ps$ (barrel)
 - $\sigma(t) = 110ps$ (endcap)
- EMC
 - 6240 CsI(Tl) crystals
 - $\sigma(E)/E = 2.5\%$
 - $\sigma_{z,\phi}(E) = 0.5 0.7 \text{ cm}$

Muon Chambers

- 8 9 layers of RPC
- p>400 MeV/c
- $\delta R\Phi = 1.4 \sim 1.7 \text{ cm}$

Superconducting Magnet

1 T magnetic field

$\gamma \gamma^* \to \pi \pi$

Previous measurements:

$$\gamma\gamma \to \pi^+\pi^-$$

- Only untagged measurements
- Data scarce at small $m_{\pi^+\pi^-}$

■ MARKII: 209 pb^{-1} , $0.35 \le m_{\pi\pi} [\text{GeV/c}^2] \le 1.6$

■ CELLO: 86 pb^{-1} , $0.75 \le m_{\pi\pi} [\text{GeV/c}^2] \le 1.9$

■ Belle: 85.9 fb^{-1} , $0.8 \le m_{\pi\pi} [\text{GeV/c}^2] \le 1.5$

Phys. Rev. D42 (1990) 1350

Z. Phys. C56 (1992) 381

Phys. Rev D75 (2007) 051101

Previous measurements:

$$\gamma \gamma^* \to \pi^0 \pi^0$$

- First single-tagged measurement
 - Belle [Phys. Rev. D93 (2016) 032003]

- 759 fb⁻¹ data
- 3 < Q² [GeV²] < 30
- 0.5 < W [GeV/c²] < 2.1
- $|\cos \theta^*| < 1.0$
- Determination of partial-wave amplitudes
- Measurement of TFF for $f_2(1270)$ and $f_0(980)$

MC Generators

- Signal: $\gamma^{(*)}\gamma^{(*)} \rightarrow \pi^+\pi^-$
 - Modified Galuga2.0 (ChPT prediction only)

- Background
 - Same final state: $e^+e^- \rightarrow e^+e^-\pi^+\pi^-$
 - Generator under development
 - Measured form factor as input

- BesBdkRc (developed from RADCOR)
 - Partly consideres radiative effects
- DIAG36 CPC 40 (1986) 285
- Helac-Phegas CPC 180 (2009) 1942
- Other:
 - $\gamma^{(*)}\gamma^{(*)} \to \eta, \eta'$ (Ekhara) PRD 85 (2012) 094010
 - QED processes, Radiative Return, DD decays, hadronic continuum

CPC 40 (1986) 271

JG U Single-tag measurement of $\pi^+\pi^-$ at BESIII

Event selection:

- Two oppositely charged tracks, identified as π^{\pm}
- lacksquare One charged track identified as e^\pm by $\frac{E_{Cal}}{}$
- Missing momentum: $q_{tag} \cdot \cos \theta_{miss} < -0.99$

$$R_{\gamma} = \frac{\sqrt{s} - E_{e^{\pm}\pi^{0}}^{CMS} - p_{e^{\pm}\pi^{0}}^{CMS}}{\sqrt{s}} < 0.15$$

Background Conditions

Dominating background

$$e^+e^- \to e^+e^-\mu^+\mu^-$$

- Cross section six times larger than signal process
- Good μ/π separation needed

$$e^+e^- \to e^+e^-\pi^+\pi^-$$

- Irreducible background
- lacksquare Peak in $m_{\pi\pi}$
- Can be subtracted

■ Other background < 0.5%

JG|U

μ/π separation

- Boosted-Decision-Tree
 - Apply to individual tracks
 - Use variables independent of kinematics
 - Trained with $\gamma^{(*)}\gamma^{(*)} \rightarrow \mu^+\mu^-$ and $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$ MC
 - Correction of data/MC efficiency differences
 - Selection validated with muons

- Select π : $y_{BDT} > 0.58$
 - Efficiency $\pi:56.2\%$
 - Efficiency $\mu:2.9\%$
- Select μ : $y_{BDT} < -0.6$
 - $\blacksquare \ \, \mathsf{Efficiency} \ \, \pi:5\%$
 - Efficiency $\mu:60\%$

μ/π separation

- Boosted-Decision-Tree
 - Apply to individual tracks
 - Use variables independent of kinematics
 - Trained with $\gamma^{(*)}\gamma^{(*)} \rightarrow \mu^+\mu^-$ and $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$ MC
 - Correction of data/MC efficiency differences
 - Selection validated with muons

Events after π - μ separation

• Select $\pi: y_{BDT} > 0.58$

• Efficiency $\pi:56.2\%$

• Efficiency $\mu:2.9\%$

■ Select μ : $y_{BDT} < -0.6$

• Efficiency $\pi:5\%$

• Efficiency $\mu:60\%$

JG|U Ba

Background from $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$

- Interference Effects (0.3%)
 - Between two-photon process and others
- Radiative Corrections (4.6% 6.2%)
 - Only in two-photon process

G U Background from $e^+e^- \rightarrow e^+e^-\pi^+\pi^-$

lacktriangle Fit peak in $m_{\pi\pi}$ and subtract from spectrum

B€SⅢ

- Gounaris-Sakurai parameterization of
- Obtain fit parameters from simulation
- Line-shape fixed when fitting data

$$|\mathrm{BW^{GS}} + \alpha \cdot e^{i\phi} \mathrm{BW}| \sqrt{1 - \frac{4m_\pi^2}{M_{\pi^+\pi^-}^2}} e^{\beta(1 - \frac{4m_\pi^2}{M_{\pi^+\pi^-}^2})} \frac{1}{M_{\pi^+\pi^-}^2}$$

JG|U

Differential Cross Section

$$\frac{d^3\sigma_{ee\to ee\pi^+\pi^-}}{d|\!\cos\!\theta^*|dWdQ^2} = \frac{N^{\rm sig}(|\!\cos\!\theta^*|,W,Q^2)}{\varepsilon(|\!\cos\!\theta^*|,W,Q^2)\Delta W\Delta|\!\cos\!\theta^*|\Delta Q^2\mathcal{L}}$$

- lacktriangle Integrated Luminosity ${\cal L}$
- Efficiency $\varepsilon(|\cos\theta^*|, W, Q^2)$
- Bin width
 - $\Delta |\cos \theta^*| = 0.1$
 - $\Delta W = 0.005 \text{ GeV/c}^2$
 - $\Delta Q^2 = 0.2 0.3 \text{ GeV}^2$
- Number of signal events $N^{sig}(|\cos \theta^*|, W, Q^2)$: Interference needs to be considered!

S + \mathcal{B} (peak) + \mathcal{B} (ee $\mu\mu$)

fix

fix

Inne-shape

smooth curve polynomial, or exponential, or theoretical formula

normalization

JG U Single-tag measurement of $\pi^+\pi^-$ at BESIII

- First single-tag measurement of $\pi^+\pi^-$!
 - Access to:
 - low momentum transfers 0.2 < Q² [GeV²] < 2.0
 - low invariant masses $m_{\pi+\pi}$ < M [GeV] < 2.0
 - full coverage of |cosθ*|

JG U Outlook: Double-Tagged Measurements

- Measurement of $F_{\gamma^*\gamma^*\pi^0}(Q_1^2,Q_2^2)$ never done before!
 - BESIII collected > 10 fb⁻¹ at $3.77 < \sqrt{s}$ [GeV] < 4.6
 - Double-tag measurement possible
 - 1st Step: Test TFF models
 - e.g. VMD vs. LMD+V

Calculations: A. Nyffeler Phys.Rev. D94, 2016, 053006

- Test polarization effects in $\gamma\gamma$ production
 - General two-photon cross section:

$$d\sigma = F \left\{ v_{TT} \, \sigma_{TT} + v'_{TT} \cos(2\tilde{\phi}) \, \left(\sigma_{\parallel} - \sigma_{\perp} \right) + h_1 h_2 v''_{TT} \, \frac{1}{2} \left(\sigma_0 - \sigma_2 \right) \right. \\ \left. + v_{LL} \, \sigma_{LL} + v_{TL} \, \sigma_{TL} + v_{LT} \, \sigma_{LT} + v'_{TL} \cos(\tilde{\phi}) \, \tau_{TL} + h_1 h_2 v''_{TL} \cos(\tilde{\phi}) \, \tau_{TL}^a \right\}.$$

- \bullet $\tilde{\phi}$: azimuthal angle between lepton planes in $\gamma^*\gamma^*$ rest frame
 - Allows to disentangle form factor contributions of multi-meson and tensor states
 - Requires precise measurement of angles and high statistics

Outlook: Zero Degree Detector

- Tagging of photons and electrons at small angles
 - Polar angle range: 1 10 mrad
- Current design: Pb-SciFi, one sided
- Upgrade: Arrays of 48 crystals (PbWO, LYSO) on both sides

In-beam tests at MAMI (Mainz)

(g-2)μ Theory Initiative Workshop

Summary

- Two-photon physics at BESIII
 - Untagged measurements for light hadron spectroscopy
 - Single-tag measurements of pseudoscalars for transition form factors
 - Here: $\gamma \gamma^* \to \pi^+ \pi^-$
 - Requires good PID, treatment of interferences
 - First measurement at low Q², low mass, and full |cosθ*|
 - To be extended to neutral final states
 - First double-tagged measurement $\gamma^*\gamma^* \to \pi^0$ started
 - New prospects from tagging detectors