e⁺e⁻ results from BABAR and implications for the muon g-2

Michel Davier (LAL – Orsay)

- the BABAR ISR program and the muon g-2
- the dominant $\pi^+\pi^-(\gamma)$ channel
- results on K⁺K⁻(γ)
- recent results: toward a complete exclusive measurement up to 1.8 GeV
- BABAR data impact on the g-2 prediction
- ongoing work

g-2 Theory Initiative FermiLab, 3-6 June 2017

PEP-II and the BABAR detector at SLAC

- asymmetric e^+e^- -collider: 9 GeV (e^-) and 3.1 GeV (e^+)
- $\sqrt{s} = 10.58 \, \text{GeV} \Rightarrow \Upsilon(4S)$ $\Rightarrow \text{above } B\overline{B}\text{-threshold}$

- main purpose: B-physics
- multi purpose detector
- data taken from 1999 2008
- integrated luminosity: $531 \, \mathrm{fb}^{-1}$ on $\Upsilon(4S)$: $454 \, \mathrm{fb}^{-1}$ $\approx 600 \cdot 10^6 \, B\overline{B}$ -pairs

The ISR method at BABAR

- High energy (E^*_{γ} >3 GeV) detected at large angle
 - \rightarrow defines $Vs' = E_{CM}$ and provides strong background rejection
- Event topology: ISR photon back-to-back to hadrons
- → high acceptance, strong boost to hadrons (measurements from threshold and easier PID)
- Final state can be hadronic or leptonic (QED)
 - $\rightarrow \mu^+\mu^-\gamma(\gamma)$ or Bhabha events used to get ISR luminosity
- Kinematic fit including ISR photon
 - → removes multihadronic background; improves mass resolution (a few MeV)
- Continuous measurement from threshold to 3-5 GeV
 - →reduces systematic uncertainties compared to multiple data sets with different colliders and detectors

The BaBar ISR program

- almost complete set of exclusive hadronic e⁺e⁻ annihilation channels up to 2 GeV
- published:

$\pi^+\pi^-$	PRL 2009; PRD 2012
K+ K-	PRD 2013
$\pi^+\pi^-\pi^0$	PRD 2004
$2(\pi^+\pi^-)$, $K^+K^-\pi^+\pi^-$, $K^+K^-2\pi^0$, $2(K^+K^-)$	PRD 2007; PRD 2012; PRD 2012
$K_{\ S}^{0}K^{+}\pi^{-+},K^{+}K^{-}\pi^{0},K^{+}K^{-}\eta$	PRD 2005; PRD 2008
$2(\pi^+\pi^-) \pi^0$, $2(\pi^+\pi^-) \eta$, $K^+K^-\pi^+\pi^-\pi^0$, $K^+K^-\pi^+\pi^-\eta$	PRD 2007
$3(\pi^+\pi^-)$, $2(\pi^+\pi^-\pi^0)$, $2(\pi^+\pi^-)$ K ⁺ K ⁻	PRD 2006
Φ f ⁰ (980)	PRD 2006; PRD 2007
рр	PRD 2006, PRD 2012
$\Lambda \pi, \Lambda \Sigma^0, \Sigma^0 \Sigma^0$	PRD 2007
${ m K^0}_{ m S} { m K^0}_{ m L}, { m \overline{K}^0}_{ m S} { m K^{\overline 0}_{ m L}} \pi^+ \pi^-, { m K^0}_{ m S} { m K^0}_{ m S} \pi^+ \pi^-$	PRD 2014
K ⁺ K [−] large Q ²	PRD 2015
$K^0_{\ S} K^{+-} \pi^{-+} \pi^0, \ K^0_{\ S} K^{+-} \pi^{-+} \eta$	PRD 2017
$K_{S}^{0}K_{L}^{0}\pi^{0}, K_{S}^{0}K_{L}^{0}\pi^{0}\pi^{0}$	PRD 2017

- to be published soon: $\pi^+ \pi^- 2\pi^0$, $\eta \pi^+ \pi^-$
- in progress: $\pi^+\pi^-$ new method + full data sample
- not covered: $\pi^+ \pi^- 4\pi^0$, $\pi^+ \pi^- 4\pi^0$, $\pi^+ \pi^- \pi^0$ below 1.05 GeV, \geq 7 hadrons

The BaBar ISR method for $\mu\mu\gamma(\gamma)$, $\pi\pi\gamma(\gamma)$, KK $\gamma(\gamma)$

 $e^+e^- \rightarrow \mu^+ \mu^- \gamma$ (γ) and $\pi^+ \pi^- \gamma$ (γ), $K^+K^- \gamma(\gamma)$ measured simultaneously Kinematic fits with additional small-angle ISR or detected (ISR or FSR)

photon

$$x=2E_{\gamma}^*/\sqrt{s}$$

$$s' = s(1 - x)$$

measure ratios $\pi\pi/\mu\mu$ KK/ $\mu\mu$ ISR lumi drops out

 $\pi\pi/\mu\mu/KK$ separated by particle ID

ISR + add. ISR

FSR

LO FSR negligible for $\pi\pi$ at s~(10.6 GeV)², but checked by measuring ISR-FSR interference (charge asymmetry, PRD 2014)

ISR + add. FSR

QED Test with μμγ sample

- absolute comparison of μμ mass spectra in data and in simulation (AfkQed based on EVA)
- simulation corrected for data/MC efficiencies
- AfkQed corrected for incomplete NLO using Phokhara
- strong test (ISR probability drops out for $\pi\pi/\mu\mu$)

Results on $e^+e^- \rightarrow \pi^+ \pi^-(\gamma)$

Results on the $e^+e^- \rightarrow K^+K^-(\gamma)$ bare cross section

• effective ISR luminosity obtained with $\mu\mu$ sample as for $\pi\pi$ cross section

K⁺K⁻: Comparison to previous experiments

The ϕ parameters

 m_{ϕ} , Γ_{ϕ} , and ϕ cross section obtained from a VDM fit of the form factor (Kuehn et al.)

$$\begin{split} m_{\phi} &= (1019.51 \pm 0.02 \pm 0.05) \; MeV \\ \Gamma_{\phi} &= (4.29 \pm 0.04 \pm 0.07) \; MeV \end{split}$$

Good agreement with PDG: $m_{\phi} = 1019.455 \pm 0.020 \ MeV$ $\Gamma_{\phi} = 4.26 \pm 0.04 \ MeV$

From integrated ϕ peak:

$$\Gamma^{\phi}_{ee} \times \text{B}(\phi \to \text{K}^+\text{K}^-) = (0.6344 \pm 0.0059_{\text{exp}} \pm 0.0033_{\text{fit}} \pm 0.0015_{\text{cal}}) \text{ keV } \quad (1.1\%)$$

[CMD2: $(0.605 \pm 0.021 \pm 0.013)$ keV

(4.1%) published,

new result?]

Results on $e^+e^- \rightarrow K_SK_L : \phi$

published in 2014 based on the full BABAR statistics (454 fb⁻¹)

- K_s reconstructed $\pi^+\pi^-$
- K₁ direction measured in EM calorimeter (original method)
- K_L efficiencies measured using kinematically constrained $\phi \rightarrow K_S$ (K_L)

$$\Gamma^{\phi}_{ee} \times \text{B}(\phi \rightarrow K_\text{S} K_\text{L}) = (0.4200 \pm 0.0033_\text{stat} \pm 0.0122_\text{syst} \pm 0.0019_\text{fit}) \text{ keV} \quad (3.0\%)$$

$$m_{\phi} = (1019.46 \pm 0.04 \pm 0.06) \text{ MeV}$$

 $\Gamma_{\phi} = (4.21 \pm 0.10 \pm 0.07) \text{ MeV}$

$$\frac{B(\phi \rightarrow K_S K_L)}{B(\phi \rightarrow K^+ K^-)} = 0.662 \pm 0.021 \quad BABAR$$

$$[0.68 \pm 0.03 \quad \text{CMD-2}]$$

$$[0.671 \pm 0.023]$$
 PDG BR av]

Impact of BABAR data for g-2: K+K- and 4-pion

```
a_{II}^{KK,LO} [0.98;1.80] GeV = (22.95 ± 0.14 (stat) ± 0.22 (syst) ) 10^{-10} (1.1%)
DHMZ 2011: update of all results before BABAR:
a_{\mu}^{KK, LO}[0.98; 1.8] \text{GeV} = (21.63 \pm 0.27 \text{ (stat)} \pm 0.68 \text{ (syst)}) 10^{-10} (3.4\%)
   BABAR more precise than previous world average by a factor of 3
a_{\mu}^{4\pi, LO} [0.9;1.80] GeV = (13.64 ± 0.03 (stat) ± 0.36 (syst) ) 10^{-10} (2.6%)
DEHZ 2003: all results but BABAR:
a_{\mu}^{4\pi, LO}[0.9; 1.8] \text{GeV} = (13.95 \pm 0.90 \text{ (exp)} \pm 0.23 \text{(rad)}) 10^{-10} (6.7\%)
   BABAR more precise than previous world average by a factor of 2.6
 a_{\mu}^{2\pi2\pi0, LO} [0.9;1.80] GeV = (18.03 ± 0.03 (stat) ± 0.55 (syst) ) 10^{-10} (3.0%)
 DEHZ 2003: all results but BABAR:
 a_{\mu}^{4\pi, LO}[0.9; 1.8] \text{GeV} = (16.76 \pm 1.31 \text{ (exp)} \pm 0.20 \text{(rad)}) 10^{-10} (7.9\%)
    BABAR more precise than previous world average by a factor of 2.6
```

BABAR: 4-pion channels

Large acceptance provided by large-angle ISR: essential to identify final-state dynamics ⇒ model MC simulation to get detection efficiency under control

BABAR: K K π and K K π π channels

BABAR: multi-pion channels

BABAR: channels with K pair

BABAR: channels with η

New BABAR $\pi\pi\gamma(\gamma)$ / $\mu\mu\gamma(\gamma)$ analysis

Cross section ratio to BaBar

- BaBar measurement most precise to date
- discrepancy with KLOE results to be resolved
- consequence: accuracy of combined results degraded
- BaBar has almost complete measurements of other hadronic contributions (27%)
- New direct measurement at Fermilab in sight
- imperative to improve accuracy of prediction
- Other efforts at VEPP-2000
- Design a new BABAR analysis for further improvement

Systematic uncertainties in published analysis

 $(x10^{-3})$

sources	0.3-0.4	0.4-0.5	0.5-0.6	0.6-0.9	0.9-1.2	1.2-1.4	1.4-2.0	2.0-3.0	mass (GeV)
trigger/ filter	5.3	2.7	1.9	1.0	0.7	0.6	0.4	0.4	
tracking	3.8	2.1	2.1	1.1	1.7	3.1	3.1	3.1	
π -ID	10.1	2.5	6.2	2.4	4.2	10.1	10.1	10.1	
background	3.5	4.3	5.2	1.0	3.0	7.0	12.0	50.0	
acceptance	1.6	1.6	1.0	1.0	1.6	1.6	1.6	1.6	
kinematic fit (χ^2)	0.9	0.9	0.3	0.3	0.9	0.9	0.9	0.9	
correl $\mu\mu$ ID loss	3.0	2.0	3.0	1.3	2.0	3.0	10.0	10.0	
$\pi\pi/\mu\mu$ non-cancel.	2.7	1.4	1.6	1.1	1.3	2.7	5.1	5.1	
unfolding	1.0	2.7	2.7	$\pi + \rho_{11}$	1.3	1.0	1.0	1.0	
ISR luminosity	3.4	3.4	3.4	$\pi \pi \mu \mu_{3.4}$	3.4	3.4	3.4	3.4	μID 3.3
sum (cross section)	13.8	8.1	10.2	5.0	6.5	13.9	19.8	52.4	

- systematic uncertainty dominated by π/μ ID
- ρ region (0.6-0.9 GeV) 0.50% of which 0.43% comes from ID (0.26 \oplus 0.43)%
- statistical and systematic uncertainties comparable
- PID systematics mostly from non-ideal performance of muon system
- Challenge: separate $\pi\pi$ and $\mu\mu$ without PID

The new analysis method

- increase statistics by using the full BaBar data set (x2)
- Use a method not relying on π/μ separation in calorimeters $\pi \pi$, $\mu \mu$ and K K have different angular distributions (θ^*) in the pair center-of-mass the distributions are fixed by first principles (spins)
 - \Rightarrow require only 2 reconstructed tracks with a kinematic fit to $\pi^+\pi^-\gamma$ (γ) hypothesis fit angular distribution in each $\pi\pi$ mass interval with $\pi\pi$ / $\mu\mu$ / KK / bkg components unfold the individual mass spectra to correct for resolution and kinematics take ratio $\pi\pi$ / $\mu\mu$ to cancel common systematics

```
advantages: get rid of the largest systematic uncertainty increase statistics: no reduction of active area remove 1 GeV momentum cut use full data set use full angular distribution (low momenta)
```

new needs: understand tracking and trigger efficiencies data/MC <1 GeV

MC angular distributions ($|\cos \theta^*_{\pi}|$)

Importance of low-momentum tracking (MC)

Conclusions

- Through the ISR method BABAR could plan a complete and consistent program to measure precise cross sections for the dominant channels of e⁺e⁻→ hadrons from threshold to ~2 GeV.
- This program has been carried out.
- Many new results presented.
- BABAR results have a large impact on the hadronic vacuum polarization (HVP) contribution to the muon g-2.
- In addition to HVP there are other applications of these data in progress for QCD tests with finite energy sum rules, complementing similar studies done with hadronic τ decays.
- An analysis of $\pi\pi/\mu\mu$ with a new approach is in progress. It should yield more precise results, both for statistics and systematics.