
art 2.06.01 and tools

Kyle J. Knoepfel
14 February 2017



art 2.06.01

Released last week.
New features:

Extended MixFilter abilities for Events and their associated
(Sub)Run products
Relaxed art::Assns<A,B> lookup policy and relaxed art::Ptr<T>

resolution rules for smart query objects
Introduction of the art tool

For more information, see the release notes at:
art 2.06.00
art 2.06.01

2/13 14 February 2017 Kyle J. Knoepfel — LArSoft coordination meeting

https://cdcvs.fnal.gov/redmine/projects/art/wiki/Release_Notes_20600
https://cdcvs.fnal.gov/redmine/projects/art/wiki/Release_Notes_20601


What is an art tool?

Description by analogy:
A module makes it possible to modify a framework program’s
behavior without rebuilding the framework.
A tool makes it possible to modify a module’s behavior without
rebuilding the module.

Features of tools:
Plugin libraries, dynamically loaded at run-time
Which libraries to load are specified by the user’s configuration
The tools themselves are configurable
A tool instance can be created anywhere in your code
A tool instance is local only to the scope in which it was created
(i.e. no global tool registry)

3/13 14 February 2017 Kyle J. Knoepfel — LArSoft coordination meeting



What is an art tool?

Description by analogy:
A module makes it possible to modify a framework program’s
behavior without rebuilding the framework.
A tool makes it possible to modify a module’s behavior without
rebuilding the module.

Features of tools:
Plugin libraries, dynamically loaded at run-time
Which libraries to load are specified by the user’s configuration
The tools themselves are configurable
A tool instance can be created anywhere in your code
A tool instance is local only to the scope in which it was created
(i.e. no global tool registry)

3/13 14 February 2017 Kyle J. Knoepfel — LArSoft coordination meeting



When to use an art tool

There are two criteria that should be satisfied before you consider
using an art tool:
(a) The subtask to be done does not make sense outside of the

context of the module, and
(b) The user needs to be able to extend what your module does

without modifying the module code.

4/13 14 February 2017 Kyle J. Knoepfel — LArSoft coordination meeting



Why not use a service?

Two motivations for a service:
1. They provide hooks to the art state transitions (primary

motivation).
2. They can provide global access to a given service instance via

ServiceHandle. However, this is encouraged only for a service
that has a const-only interface.

The need for the art tool is not addressed by either of these
motivations.

5/13 14 February 2017 Kyle J. Knoepfel — LArSoft coordination meeting



Kinds of art tools

Function tool Loadable library that provides access to a free function
(e.g. RT myFunction(ARGS...)). When a tool of this kind is
created, its C++ type is std::function<RT(ARGS...)>.

Class tool Loadable library that is represented by a user-defined
class (e.g. MyInterface). When a tool of this kind is
created, its C++ type is std::unique_ptr<MyInterface>.

Recommendations:
Favor a function tool over a class tool. Only choose a class tool if
you need to retain state during interface calls.
Creating a tool is encouraged only in the constructor of the module
that uses it. It can be used elsewhere in the module, however.

6/13 14 February 2017 Kyle J. Knoepfel — LArSoft coordination meeting



Defining a function tool

1 // makeTracks.hh

2 // ... #includes

3 Tracks makeTracks(Hits const &);

Now create a source file from which a *_tool.so library is made.

1 // makeTracks_tool.cc

2 #include "art/Utilities/ToolMacros.h"

3 #include "makeTracks.hh"

5 Tracks makeTracks(Hits const& hits) {

6 // Make ’tracks ’ from ’hits ’...

7 return tracks;

8 }

9 DEFINE_ART_FUNCTION_TOOL(makeTracks , "Trks")

7/13 14 February 2017 Kyle J. Knoepfel — LArSoft coordination meeting



Defining a function tool

1 // makeTracks.hh

2 // ... #includes

3 Tracks makeTracks(Hits const &);

Now create a source file from which a *_tool.so library is made.

1 // makeTracks_tool.cc

2 #include "art/Utilities/ToolMacros.h"

3 #include "makeTracks.hh"

5 Tracks makeTracks(Hits const& hits) {

6 // Make ’tracks ’ from ’hits ’...

7 return tracks;

8 }

9 DEFINE_ART_FUNCTION_TOOL(makeTracks , "Trks")

7/13 14 February 2017 Kyle J. Knoepfel — LArSoft coordination meeting



Using a function tool
To make use of the tool, include the appropriate headers, including:

art/Utilities/make_tool.h

makeTracks.hh

1 std::function <decltype(makeTracks)> make_;

2 make_=make_tool <decltype(makeTracks )>(nps ,"Trks");

Notice that the second argument to art::make_tool ("Trks") agrees
with the second argument provided to the DEFINE_ART_FUNCTION_TOOL

macro on the previous slide.

8/13 14 February 2017 Kyle J. Knoepfel — LArSoft coordination meeting



Using a function tool
To make use of the tool, include the appropriate headers, including:

art/Utilities/make_tool.h

makeTracks.hh

1 std::function <decltype(makeTracks)> make_;

2 make_=make_tool <decltype(makeTracks )>(nps ,"Trks");

Call function wherever it’s needed:

1 void produce(art::Event& e) override

2 {

3 auto const& hits = e.getValidHandle <Hits >(...);

4 auto tracks = make_(*hits);

5 e.put(make_unique <Tracks >(move(tracks )));

6 }

8/13 14 February 2017 Kyle J. Knoepfel — LArSoft coordination meeting



Specifying a function tool in your FHiCL file
Include a nested table in your module’s configuration, which contains a
parameter named tool_type, whose value is the basename of the .so

file.

1 trackProducer: {

2 module_type: TrackProducer

3 trackAlgo: {

4 tool_type: makeTracks

5 }

6 }

From the previous page:

1 art::make_tool <decltype(makeTracks )>(nps , "Trks");

where nps is equal to:

1 module_ps.get <ParameterSet >("trackAlgo")

9/13 14 February 2017 Kyle J. Knoepfel — LArSoft coordination meeting



Defining a class tool

1 class Counter {

2 public:

3 virtual ~Counter () noexcept = default;

4 virtual void update(unsigned) = 0;

5 virtual unsigned count() const = 0;

6 };

10/13 14 February 2017 Kyle J. Knoepfel — LArSoft coordination meeting



Defining a class tool

1 // SimpleCounter_tool.cc

2 #include "art/Utilities/ToolMacros.h"

3 #include "Counter.hh"

4 class SimpleCounter : public Counter {

5 public:

6 SimpleCounter(ParameterSet const& ps) :

7 count_{ps.get <string >("offset")}

8 {}

9 private:

10 void update(unsigned n) override {count_ += n;}

11 unsigned count () const override {return count_ ;}

12 unsigned count_;

13 };

14 DEFINE_ART_CLASS_TOOL(SimpleCounter)

10/13 14 February 2017 Kyle J. Knoepfel — LArSoft coordination meeting



Using a class tool

1 std:: unique_ptr <Counter > counter_;

2 counter_ = art::make_tool <Counter >(nps);

Header dependency required just for Counter, not for a derived type.

11/13 14 February 2017 Kyle J. Knoepfel — LArSoft coordination meeting



Using a class tool

1 std:: unique_ptr <Counter > counter_;

2 counter_ = art::make_tool <Counter >(nps);

1 void analyze(art::Event const& e) override

2 {

3 auto const& ts = e.getValidHandle <Tracks >(...);

4 counter_ ->update(ts.size ());

5 }

1 void endJob () override

2 {

3 LogInfo (...) << "Number of tracks seen: "

4 << counter_ ->count() << ’\n’;

5 }

11/13 14 February 2017 Kyle J. Knoepfel — LArSoft coordination meeting



Specifying a class tool in your FHiCL file
Include a nested table in your module’s configuration:

1 trackCounter: {

2 module_type: TrackCounter

3 counterAlgo: {

4 tool_type: SimpleCounter # Derived type

5 offset: 0 # Additional parameters for tool

6 }

7 }

From the previous page:

1 art::make_tool <decltype(makeTracks )>(nps);

where nps is equal to:

1 module_ps.get <ParameterSet >("counterAlgo")

12/13 14 February 2017 Kyle J. Knoepfel — LArSoft coordination meeting



Concluding remarks

art tools are now supported as of version 2.06.00 and 2.06.01.
They provide a means of adjusting the behavior of a module
without having to rebuild it.
It is possible to implement configuration validation and description
with tools. Please get ahold of me, if you’re interested.
Documentation is still being written; however, please see:

General design considerations
Guide to writing and using tools

13/13 14 February 2017 Kyle J. Knoepfel — LArSoft coordination meeting

https://cdcvs.fnal.gov/redmine/projects/art/wiki/General_design_considerations
https://cdcvs.fnal.gov/redmine/projects/art/wiki/Guide_to_writing_and_using_tools

