Overview of the FC-Endwall Production for the ProtoDUNE Single-phase LAr Detector

Thomas Kutter,
LSU
for the FC Endwall production team

PRR at LSU April 5, 2017

The Team

LSU machine shop:

Brandon Amos, Donnie Olano, Vince Vaughn

LSU electronics shop:

Brad Ellison, Marcus Nauman, (Doug Smith)

LSU Students:

Bryce Bowlsbey, Zach Bradshaw, Hunter Meyer, Brandon Roberts, Nicholas Welsch

Part of our campus network:

Chem. E. machine shop: Joseph Bell

LSU ESH: Jason Lejeune

Engineering and design at BNL: Rahul Sharma, Andres Ruga

Outline

- FC design overview
- FC production of parts
- QC procedure and documentation
- Status of module zero
- Schedule

Resistive divider chain production

ProtoDUNE-SP Field Cage (FC) Geometry

Major mechanical units:

Top + bottom FC:

3 panels wide per drift volume with mounted ground plane

Total quantity: 12

Endwall FC:

4 panels high per drift volume

Total quantity: 16

ProtoDUNE-SP Field Cage Endwall

FC Endwall Parts Production at LSU

LSU shop:

- Cut rectangular FRP beams to length
- Reaming of holes and rounding of edges
- G10 bushings and angle
- All SS parts (three types of nuts)
- Al parts for lifting jig
- Small part water jetting

Waterjet cutting (local outside company):

- Cut shapes in rectangular FRP beam
- Cut large components from FRP plates
- → Parts manufacturing + QC checks
- → assembly of each endwall panel in high bay area (alignment QC)
- → hanging of panels to test interconnects
- → Hazard Analysis for connecting and hanging panels
- → dis-assemble panels + clean components
 - + QC checks + coating
- → Final assembly in controlled area

Sample QA/QC Issues

<u>Visual inspection</u>: some defects noticed during *Ash River mech. mock-up* production

FC Production/Assembly Site:

- FC endwall panels requires access from both sides
- panel turntable in controlled area
 - Nearly complete

Status of Module zero:

All parts in hand

Module assembled in high bay area and taken apart

All major components cleaned

In progress:

clean small components in ultrasound bath

Next steps:

- Coat FRP parts
- Profiles: inspect, drill holes, clean
- Assemble panel zero in controlled area
- Double bag and prepare for shipment to PSL

Crating/Shipping Preparations

- Plastic double bagging of panels in controlled area
- → crating and shipment to CERN

Four individually bagged panels per crate

FC Production/Assembly Schedule

Approximate schedule for FC endwall:

Resistive Divider Chain Production at LSU

Divider boards can be mounted at different positions along the metal profiles. They are staggered to provide a continuous chain.

Built R-divider boards for HV test at PC4

Boards attached with brass screw to SS nut in profile

- → Developed and commissioned component test stand
- Automated measurement procedure and data logging
 - → UG Students can perform measurements and analyze data
- → Defined QC criteria

Large Scale Component QC Test Stand

Need to test \sim 8000 MOV and \sim 4000 resistors

- → Can stack up to 5 PCBs high, each with 16 MOVs or resistors → 80 devices per setup
- → have multiple mechanical mounts

Status:

7000 MOVs in hand; 1500 resistors in hand

Started production mass testing in shift modus

 \rightarrow \sim 240 devices per day (warm and cold)

In progress:

Assemble boards and perform final QC

Discharge tests of assembled divider boards starting at Yale (joint with SBND effort –

Serhan Tuflani)

→ test several boards

Components are individually bagged and serialized

Final QC measurements + documentation

Each test circuit consists of two 1 G Ω resistors in parallel connected to a 100.0 K Ω pickoff resistor. A DMM with a 10 M Ω input impedance is connected in parallel with the pickoff resistor The equivalent circuit from above consists of two resistors in series: Ra = 500M and Rb = 99.0099K

A test voltage of 1 kV (Vi) is applied across Ra and Rb.

The current is calculated by dividing the DMM voltage across the pickoff resistor by Rb. (Ic=Vp/Rb)

For the tables below, columns 1-8 are referenced to the first stage at R1/R2 on the left side of the PCB and move sequentially to the right.

DMM voltages (Vp) measured across 100.0 K Ω pickoff resistor.								Unit = mV		
Board #	V-1	V-2	V-3	V-4	V-5	V-6	V-7	V-8 Measurem	ent	
010	196.2	196.1	196.0	196.8	196.5	196.0	196.4	196.1 Bench		
010	196.0	195.6	195.6	195.6	196.2	195.6	196.0	*** Profile		

Calculated	current fro	om above i	oickoff vol	tages lo	c = Vp*100	0/99009.9	U	Init = μA	
Board #	i-1	i-2	i-3	i-4	i-5	i-6	i-7	i-8 Measureme	ent
010	1.982	1.981	1.980	1.988	1.985	1.980	1.984	1.981 Bench	
010	1.980	1.976	1.976	1.976	1.982	1.976	1.980	*** Profile	

Calculated resistance from Ic			Ra	a = (Vi - Vp)/Ic	Unit=M Ω			
Board #	R-1	R-2	R-3	R-4	R-5	R-6	R-7	R-8 Measurement	
010	504.5	504.8	505.1	503.0	503.8	505.1	504.0	504.8 Bench	
010	505.1	506.1	506.1	506.1	504.5	506.1	505.1	*** Profile	

*** - No measurment made due to shorting of profiles at positions 7 and 8 when Al bracket is mounted!

QC procedure:

Measure voltage drop for each individual stage, convert to current, calculate equivalent resistance R_{Δ} (nominal: 500 M Ω) **Results:** see spreadsheet on left

→ For all R-divider boards and steps

^{*}Resistor pos measured from top to bottom on each group

Board Lay	out								
LSU	Resistor pos 1 (R1)	Resistor pos 1 (R3)	Resistor pos 1 (R5)	Resistor pos 1 (R7)	Resistor pos 1 (R9)	Resistor pos 1 (R11)	Resistor pos 1 (R13)	Resistor pos 1 (R15)	
	MOV pos	MOV pos							1
physics	3	3	MOV pos 3	MOV pos 3	MOV pos 3	MOV pos 3	MOV pos 3	MOV pos 3	1
&	MOV pos 2	MOV pos 2	MOV pos 2	MOV pos 2					
Astronom									1
У	MOV pos 1	MOV pos 1	MOV pos 1	MOV pos 1	1				
	Resistor pos 2 (R2)	Resistor pos 2 (R4)	Resistor pos 2 (R6)	Resistor pos 2 (R8)	Resistor pos 2 (R10)	Resistor pos 2 (R12)	Resistor pos 2 (R14)	Resistor pos 2 (R16)	board #
	group 1 (-1)	group 2 (-2)	group 3 (-3)	group 4 (-4)	group 5 (-5)	group 6 (-6)	group 7 (-7)	group 8 (-8)	

^{*}MOV pos measured from left to right of each goup