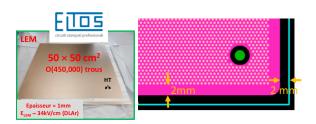
WA105<


ANSYS and Garfield simulations of the LEM border impact on collection efficiency

Philippe COTTE

February 22, 2017

Main question (reminder and update)

4mm without holes on LEM border + 0.5mm gap between anodes + screws and other imperfections

 \Rightarrow Can influence the path of drifting electrons : some might be lost

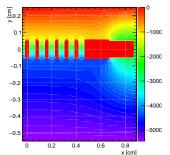
Study

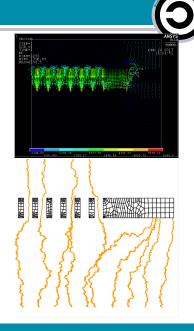
What is the impact on charge collection?

What had already been done

Qscan's projection on CRP has been pixelized

Most recent work


Determination of the collection efficiency depending on the x-y charge position at CRP with ANSYS and Garfield


Done by:

Looking at the fraction of electrons reaching amplification zone (between LEM and anode)

Geometry: 2D model field, potential and drift of 10 electrons

Drift of 10000 electrons

uniformly distributed at bottom of the geometry

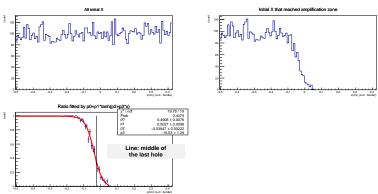
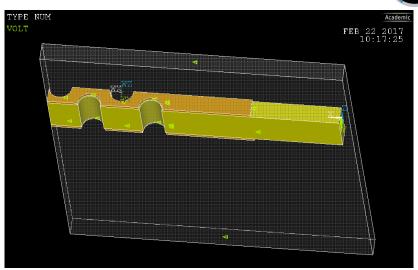



Figure: initial horizontal position of electrons reached amplification zone (right), of all electrons (left), and ratio of both (i.e collection efficiency, bottom). Fitted with a tanh.

Geometry: 3D model Mirror symmetry conditions on Y borders

Drift of 10000 electrons

uniformly distributed at bottom of the geometry

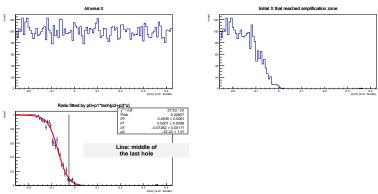


Figure: initial horizontal position of electrons reached amplification zone (right), of all electrons (left), and ratio of both (i.e collection efficiency, bottom). Fitted with a tanh.

Conclusion and next work

- \sim 2mm of decreasing efficiency: not an abrupt gap from 1 to 0
 - ▶ Do same work for corner, screw holes and HV connectors ▲
 - Add to Qscan

The End

Thank you!