Assessment for the evaluation method of Space Charge Effect

Iwate University
H.Konari

Contents

- Explanation of the method to evaluate space charge effect
- Assessment for the evaluation method of Space Charge Effect
 - -comparison of simulation results between uniform field case and field with space charge
 - -comparison between simulation results and the direct calculation of the space charge effect from Field Map
- conclusion so far

Method to evaluate space charge effect

- Particles from accelerator which will be injected to 6x6x6 have well defined direction
 - *assumed beam line is
 - incident at (x,y,z)=(-300[cm], -300[cm], 108.063[cm])
 - pass through (x,y,z)=(0[cm], 0[cm], 50.7[cm])
 (Need to check the latest information about beam information)
 - Divergence is assumed to be 0 for this study (Need to check the reality of divergence)
- To evaluate space charge effect, reconstructed charge position (with assumed uniform field strength of 500V/cm) is compared with the ideal beam line geometry, namely, systematic shift of the position and dispersion

Method to evaluate space charge effect

- Assumption of drift field for the simulation data
 - 1. Uniform field of 500V/cm as a reference
 - 2. Field map: COMSOL simulation, Applied field of 500V/cm, with backflow from LEM 0%
 - 3. Field map: COMSOL simulation, Applied field of 500V/cm, with backflow from LEM 10%
- 100events of 4GeV/c and 10GeV/c μ⁺ for each configuration
- Although, the simulation includes the field distortion, not only Z but also X, Y direction, for this study, as a first attempt, the comparison of reconstructed position with ideal beamline geometry is conducted, with assuming there is only Z directional distortion effect.

^{*}Need to check appropriateness of this assumption.

Method to evaluate space charge effect

Examine whether we will see the difference between uniform field case and field with Space charge effect

In addition to the M.C. simulation, expected Z position which is calculated directly from FieldMap is evaluated (Verification of Consistency)

Evaluation of the space charge effect

The difference in z position between the ideal beamline and the simulated/reconstructed Beam is calculated for each region on the ideal beamline. The ideal beamline is divided each 1000 mm in x (y).

(here, it is referenced by as X Y coordinate)

- X-Z view and Y-Z view information are independently evaluated for these configuration.
 - 1. Uniform field of 500V/cm as a reference
 - 2. Field map: COMSOL simulation, Applied field of 500V/cm, with backflow from LEM 0%
 - 3. Field map: COMSOL simulation, Applied field of 500V/cm, with backflow from LEM 10%

The difference in z position (Uniform field of 500V/cm)

- •central value is on the ideal line
- Larger dispersion for larger length from start point
- More dispersion for 4GeV/c than 10GeV/c

The difference in z position (Uniform field of 500V/cm) 10GeV/c 4GeV/c hzlen2v0 hzlen2v0 40187 Entries Entries 7000 -0.7881 2.953 85.24 70.52 RMS RMS 3000 6000 2500 5000 2000 4000 1500 3000 1000 2000 500 1000 -1000 $2000[mm] \le x < 3000[mm]$ $2000[mm] \le x < 3000[mm]$ hzlen3v0 38361 41137 Entries Entries 4500 2200 -0.2567 10.78 Mean Mean 80.81 RMS 111.2 4000 2000 1800 3500 1600 3000 1400 2500 1200 1000 2000 800 1500 600 1000 400 200 -1000 $3000[mm] \le x < 4000[mm]$ $3000[mm] \le x < 4000[mm]$

Funny periodical structure, to be understood

The difference in z position (Uniform field of 500V/cm) 10GeV/c 4GeV/c hzlen4v0 hzlen4v0 37507 39260 1800 Entries Entries 5.043 9.817 Mean 138.2 82.41 RMS RMS 1600 4000 1400 1200 3000 1000 800 2000 600 400 1000 200 -1000 $4000[mm] \le x < 5000[mm]$ $4000[mm] \le x < 5000[mm]$ hzlen5v0 32432 3500 38700 Entries Entries 12.16 8.4 Mean Mean 89.28 RMS 1000 3000 2500 800 2000 600 1500 400 1000 200 $5000[mm] \le x \le 6000[mm]$ $5000[mm] \le x \le 6000[mm]$

Funny periodical structure, to be understood

The difference in z position(FieldMap: 500V/cm nominal, no backflow)

Shift of central value is observed

The difference in z position(FieldMap: 500V/cm nominal, no backflow)

Funny periodical structure, to be understood

The difference in z position(FieldMap: 500V/cm nominal, no backflow)

Funny periodical structure, to be understood

The difference in z position(FieldMap: 500V/cm nominal, backflow 10%)

- Shift of central value is observed
- Bigger shift for 10%backflow than 0% backflow as is expected

The difference in z position(FieldMap: 500V/cm nominal, backflow 10%) 10GeV/c 4GeV/c hzlen2v0 hzlen2v0 hzlen2v0 hzlen2v0 38568 40291 Entries 5000 3000 -168.8-165.6Mean Mean 90.99 76.38 RMS RMS 2500 4000 2000 3000 1500 2000 1000 1000 500 -1000 $2000[mm] \le x < 3000[mm]$ $2000[mm] \le x < 3000[mm]$ 38888 Entries Entries 2200 4500 -196.5 -186.5Mean Mean 85.97 RMS 114.9 RMS 2000 1800 3500 1600 1400 2500 1200 1000 2000 800 1500 600 1000 400 500 200 -1000 $3000[mm] \le x < 4000[mm]$ $3000[mm] \le x < 4000[mm]$

Funny periodical structure, to be understood

The difference in z position(FieldMap: 500V/cm nominal, backflow 10%) 10GeV/c 4GeV/c hzlen4v0 hzlen4v0 38340 Entries Entries 1400 -149.1-145.3Mean 151.4 90.77 RMS RMS 1200 1000 2000 800 1500 600 1000 400 500 200 -1000 $4000[mm] \le x < 5000[mm]$ $4000[mm] \le x < 5000[mm]$ 29669 36569 Entries Entries -60.1 -55.78 Mean Mean 2000 F 700 183 94.32 RMS RMS 1800 600 1600 500 1200 400 300 200

 $5000[mm] \le x \le 6000[mm]$ $5000[mm] \le x \le 6000[mm]$ Funny periodical structure, to be understood

100

400

200

Observation

- Uniform field
 - central value is on the ideal line
 - Larger dispersion for larger length from start point
 - More dispersion for 4GeV/c than 10GeV/c
- Field map with space charge
 - Shift of central value is observed
 - Bigger shift for 10%backflow than 0% backflow as is expected
- Funny periodical structure, to be understood

Result(X-Z view, 4GeV/c)

Mean value (arithmetic) and peak value of Gaussian fit are summarized in a table

	X	0 < X < 1000[mm]	1000 < X < 2000[mm]	2000 < X < 3000[mm]	3000 < X < 4000[mm]	4000 < X < 5000[mm]	5000 < X < 6000[mm]
Uniform 500V/cm	Peak	0.56	0.89	2.09	5.61	9.83	13.32
	Mean	1.65	1.08	-0.45	1.14	6.98	8.11
use Field Map 1 (500V/cm nominal, no backflow)	Peak	-7.66	-33.67	-69.68	-80.83	-53.57	-29.79
	Mean	-7.53	-34.10	-70.61	-86.13	-63.94	-18.26
use Field Map 2 (500V/cm nominal, backflow 10%)	Peak	-17.21	-88.27	-168.4	-190.8	-135.5	-43.12
	Mean	-11.22	-86.01	-168.8	-196.5	-149.1	-60.10

indicating the space charge effect
• When using FieldMap②, z distance is about 2~3 times larger than using FieldMap①

When using FieldMap, z distance changes greatly to negative direction,

- NOTE:
- * This is the first attempt to quantify the peak value.
- *Quantitative evaluation of the peak position to be better defined with understanding uncertainty. (Need to understand funny structure of the distribution)

Result(Y-Z view, 4GeV/c)

Mean value (arithmetic) and peak value of Gaussian fit are summarized in a table

	Υ	0 < Y < 1000[mm]	1000 < Y < 2000[mm]	2000 < Y < 3000[mm]	3000 < Y < 4000[mm]	4000 < Y < 5000[mm]	5000 < Y < 6000[mm]
Uniform 500V/cm	Peak	0.62	1.60	1.70	7.50	9.20	16.82
	Mean	1.18	1.43	-0.02	3.11	6.53	6.50
use Field	Peak	-7.62	-32.76	-69.98	-79.79	-57.29	8.70
Map 1 (500V/cm nominal, no backflow)	Mean	-8.12	-33.94	-70.26	-84.04	-64.37	-19.84
use Field Map 2 (500V/cm nominal, backflow 10%)	Peak	-17.60	-87.61	-168.7	-190.5	-136.1	-45.83
	Mean	-11.58	-86.41	-168.3	-194.5	-148.9	-61.26

- •When using FieldMap, z distance changes greatly to negative direction indicating the space charge effect
- When using FieldMap②, z distance is about 2~3 times larger than using FieldMap① NOTE:
- * This is the first attempt to quantify the peak value.
- *Quantitative evaluation of the peak position to be better defined with understanding uncertainty. (Need to understand funny structure of the distribution)

Result(X-Z view, 10GeV/c)

Mean value (arithmetic) and peak value of Gaussian fit are summarized in a table

	X	0 < X < 1000[mm]	1000 < X < 2000[mm]	2000 < X < 3000[mm]	3000 < X < 4000[mm]	4000 < X < 5000[mm]	5000 < X < 6000[mm]
Uniform 500V/cm	Peak	0.53	1.55	4.47	7.70	10.76	6.93
	Mean	-0.88	0.10	2.95	10.78	9.82	8.40
use Field Map 1 (500V/cm nominal, no backflow)	Peak	-8.93	-34.76	-66.79	-79.08	-60.10	-14.46
	Mean	-10.35	-35.69	-67.81	-76.33	-60.41	-15.49
use Field Map 2 (500V/cm nominal, backflow 10%)	Peak	-17.10	-88.64	-164.7	-189.7	-146.0	-55.78
	Mean	-12.40	-88.74	-165.6	-186.5	-145.3	-55.86
- M/h on using Field Man - distance changes greatly to negative direction							

- •When using FieldMap, z distance changes greatly to negative direction indicating the space charge effect
- When using FieldMap②, z distance is about 2~3 times larger than using FieldMap① NOTE:
- * This is the first attempt to quantify the peak value.
- *Quantitative evaluation of the peak position to be better defined with understanding uncertainty. (Need to understand funny structure of the distribution)

Result(Y-Z view, 10GeV/c)

Mean value (arithmetic) and peak value of Gaussian fit are summarized in a table

	Υ	0 < Y < 1000[mm]	1000 < Y < 2000[mm]	2000 < Y < 3000[mm]	3000 < Y < 4000[mm]	4000 < Y < 5000[mm]	5000 < Y < 6000[mm]
Uniform	Peak	0.38	1.45	4.68	7.94	8.12	8.32
500V/cm	Mean	1.27	0.13	4.05	11.46	9.55	7.79
use Field Map 1 (500V/cm nominal, no backflow)	Peak	-8.94	-34.65	-66.28	-79.48	-61.34	-15.61
	Mean	-10.97	-35.82	-66.54	-75.38	-60.86	15.84
use Field Map 2 (500V/cm nominal, backflow 10%)	Peak	-17.54	-88.67	-164.5	-189.9	-146.7	-55.66
	Mean	-12.88	-89.27	-164.3	-186.8	-145.0	-56.05

- •When using FieldMap, z distance changes greatly to negative direction indicating the space charge effect
- When using FieldMap②, z distance is about 2~3 times larger than using FieldMap① NOTE:
- * This is the first attempt to quantify the peak value.
- *Quantitative evaluation of the peak position to be better defined with understanding uncertainty. (Need to understand funny structure of the distribution)

Direct calculation of the space charge effect from Field Map

Calculate z distance from Ideal beamline from FieldMap information

procedure

- 1.Export drift time from Map data which is the closest to ideal beamline.
- 2. The drift length is calculated by drift time×drift velocity
 - →This should corresponds to the z coordinate of the reconstructed charge position
- 3. Calculate the difference between this calculation and reconstructed z information → The difference is "Z distance"
- 4. Partitioning is based on same as shown before (1000mm each)

Result

		0 < X < 1000[mm]	1000 < X < 2000[mm]	2000 < X < 3000[mm]	3000 < X < 4000[mm]	4000 < X < 5000[mm]	5000 < X < 6000[mm]
use Field Map 1 (500V/cm nominal, no backflow)	Peak	-7.66	-33.67	-69.68	-80.83	-53.57	-29.79
	Mean	-7.53	-34.10	-70.61	-86.13	-63.94	-18.26
Calculated value		-8.86	-41.54	-72.88	-84.21	-64.37	-19.7

unit[mm]

		0 < X < 1000[mm]	1000 < X < 2000[mm]	2000 < X < 3000[mm]	3000 < X < 4000[mm]	4000 < X < 5000[mm]	5000 < X < 6000[mm]
use Field Map 2 (500V/cm nominal, backflow 10%)	Peak	-17.21	-88.27	-168.44	-190.82	-135.49	-43.12
	Mean	-11.22	-86.01	-168.8	-196.5	-149.10	-60.10
Calculated value		-29.28	-115.8	-180.58	-190.08	-138.28	-44.73

unit[mm]

• Direct calculation are mostly corresponds to the simulation results

NOTE:

- * This is the first attempt to quantify the peak value.
- *Quantitative evaluation of the peak position to be better defined with understanding uncertainty. (Need to understand funny structure of the distribution)

Funny structure of the distribution

FieldMap: 500V/cm nominal, no backflow

 $4000[mm] \le x < 5000[mm]$

 $4000[mm] \le x < 5000[mm]$

There are strange periodical structure.

Summary

evaluation method of Space Charge Effect is assessed

Evaluated space charge effect looks reasonably reflects the input field distortion value.

Next:

- •Understand the cause of funny structure of the distribution.
- •Need to better quantify the effect with understanding uncertainty.
- Need to check the latest information about beam information including beam divergence.
- •Need to check relative magnitude of X,Y components of distortion, with respect to Z component

Comparison of histogram(Uniform field of 500v/cm)

Comparison of histogram (Uniform field of 500v/cm)

Comparison of histogram (Uniform field of 500v/cm)

Comparison of histogram(FieldMap: 500V/cm nominal, no backflow)

Comparison of histogram(FieldMap: 500V/cm nominal, no backflow)

Comparison of histogram(FieldMap: 500V/cm nominal, no backflow)

Comparison of histogram(FieldMap: 500V/cm nominal, backflow 10%)

Comparison of histogram(FieldMap: 500V/cm nominal, backflow 10%)

Comparison of histogram(FieldMap: 500V/cm nominal, backflow 10%)

