

Electrostatic simulations for protoDune-DP

C. Cantini, P. Chiu, A. Gendotti, L. Molina Bueno, S.Murphy, A. Rubbia, C. Regenfus, F. Sergiampietri, S.Wu

ProtoDUNE design review, 24th-25th April 2017

300 kV Heinzingel power supply (PSU

ETH zürich

1-Generation of the nominal high voltage

ETH zürich

2

300 kV Heinzinge power supply (PSU

Simulations

Electrostatic simulations of the different parts of the detector performed with COMSOL multi physics:

- A. Field Cage
- **B.** Cathode
- C. Ground Grid
- D. HVFT+connection to the cathode

Simulations

98 Field shapers separated 60 mm and with a potential difference between them of 3 kV.

	Distance to the	Operating	Field to the stage
	stage above $[mm]$	potential $[kV]$	above $[kV/cm]$
Anode	-	0	-
LEM(upper electrode)	2	-1	5
LEM(lower electrode)	1	-4	30
LAr level	5	-	-
Extraction grid	5	-6.5	2.5
First field shaper	60	-9.5	0.5
Last field shaper	60	-300.5	0.5
Cathode	60	-303.5	0.5

ETH zürich

WA105 <~ 5

0

-1

-2

-3

ETH zürich

Surface: Electric field norm [kV/cm]


```
WA105 <~ 7
```


Front-view

Front-view of 6 profiles considering a potential difference between them of 3 kV, as in the 6x6x6 field cage

With clip

Without clip

ETH zürich

WA105 << 12

2D-cross-section across the tubes


```
WA105 <~ 15
```

Surface: Electric field norm [kV/cm]


```
WA105 <~ 17
```


ETH zürich

3D simulation of a corner of the cathode. Small tubes not taken into account to simplify the simulation

ETH zürich

Cathode

Surface: Energy density (J/m³)

_____ 22

B

Ground Grid

Cathode

Surface: Energy density (J/m³)

Surface: Energy density (J/m³)

C)Ground grid

Surface: Electric field norm [kV/cm]

C)Ground grid

Electric field norm (k//cm)

\rightarrow **HVFT + connection to the cathode**

ETH zürich

E

ETH zürich

Surface: Electric field norm (kV/cm)

Surface: Electric field norm (kV/cm)


```
WA105 32
```



```
WA105 <~ 33
```



```
WA105 <~ 33
```


• Improved design done by Franco to minimise the high electric field locally.

ETH zürich

WA105 <<

Electric Field [kV/cm]

Conclusions:

Simulations: electrostatic simulation of the whole field cage design

- A. Field cage: final design 2D simulation performed:
 - **Clip:** based on simulations, the proposed design does not represent any problem.
- **B.** Cathode:
 - Along all the structure the field is below 30 kV/cm.
 - Drift field uniformity acceptable above 7 cm from the cathode.
 - 3D simplified simulations performed .to estimate the capacitance.
- C. Ground grid:
 - 2 mm radius wires to have a field below 30 kV/cm.
- **D.** High voltage feedthrough:
 - Simulation of the field along the HVFT calculated and the highest field is reached at the end of the outer conductor.
 - Simulation and design of the connection between the HVFT and the cathode are work in progress.

