APA Gap Crossers

Mike Wallbank 22/2/2017

- Continuing the work I did with the APA crossers and considering APA gap crossers.
- Verifying Animesh's measurements of the gaps from data.
- Since last week:
- Tidied up my track selection — looks much better now!
- Attempted to measure all gaps and resolve ambiguities related to the track angle.
- Found some 'interesting’ things out...
- Had a look to see what we can find out by looking at charge deposited near the gaps.

Measuring APA Gaps

- Same code I used as APA crossers; fit linear regression, vary gap, minimise the residuals.
- Use only hits $<15 \mathrm{~cm}$ from the gap.

$$
\sum_{i}^{n h i t s}\left(\frac{o_{i}-e_{i}}{\sigma_{i}}\right)^{2}
$$

Minimise this 'chi-square'

Measuring APA Gaps

Track Selection

- Take only hits close to the gap.
- Angle between segments <0.5 degs.
- Number of hits in each segment >= 5 .
- Counter gradient >= 3 .
- Non-APA crosser.

Angle Resolution

- TPC5/TPC7

- Interesting distribution - could be due to issues discussed later...

TPC5/TPC7 Gap

- Very obvious issue related to two peaks:

- Noticed this last week but it's conclusive now!

TPC5/TPC7 Gap

- This can be explained by separating this out by track angle (wrt to the z -direction):

Double Peak

- It looks like there's a bias here - the sign of the gap is affected by the angle the track makes with the APAs.
- Two possibilities:
- problem with my method;
- problem with the geometry (my favourite kind of problem...).

Double Peak

- This is could be due to a misalignment in x :

Double Peak

- Distribution of measured x-position of hits coming from opposite counter pairs for TPC5 and TPC7.
- Systematic offset? 3 cm seems very large!

- I applied this offset and recalculated the gaps... got wholly nonsensical results though!

Double Peak

- Looks less obvious with more stats...

Investigating the Double Peak

- Validated the method in 3 ways:
- using simulation;
- artificially considering a few wires in a TPC as a gap (David's suggestion from last week);
- drawing hits directly!
- The method seems fine...
- I'm calculating delta z directly, not calculating delta x or anything else first.
- I'm as certain as I can be that my method is not biased wrt track angle!

Data Validation

- Artificially created a gap in the one single TPC by removing hits from 3 cm worth of wires in the centre.
- Peaked nicely at 0 . The introduced a 0.5 cm offset and measured that:

Observing Hits Directly

- Positive gradient track:

- Seems fine, I've zoomed in on the region with my ruler and it certainly appears to fix things!

Observing Hits Directly

- Negative gradient track:

- Again, the fix appears to improve things.

Simulation Validation

- Only one peak - at 0 , as expected.
- I tried introducing a z-offset (2 cm); this is measured very accurately:

Simulation Validation

- Now tried introducing an x-offset (0.5 cm).

- This is the exact effect I'm seeing in the data! And the z-offset is where the distribution is minimised.

Simulation Validation

- Now separate out wrt track angle:

- 'True offset' is the maximum of the negative angle distribution and the minimum of the positive angle distribution.

Observations

- I'm convinced that the issue here is an offset in x between the APAs.
- A shift in -ve x for TPC7 would fix the offsets on both slides 18 and 19.
- Problem: Animesh hasn't seen the same thing. However, it looks like there may be hints...
- e.g. Slides 11\&12 from last week: link.
- The binning in most of these plots wouldn't show this.
- Next problem: it is impossible to separate out the effects of z offset and x offset (using these tracks only).

Back to TPC5/TPC7 Gap

- Using what is implied from the simulation, assuming the model of both x-offset and z offset, measure the z-offset by minimising the distribution.
- - 0.1 cm .

Back to TPC5/TPC7 Gap

- Instead of measuring z-gap, instead use these tracks to measure x-gap (with z-offset set to -1 mm):

- Looks consistent (and very convincing!) with a $\sim-2 \mathrm{~mm} x$-offset.

Back to TPC5/TPC7 Gap

- Assuming the model which contains offsets in both x and z, with the z offset given by minimising the distributions for positive and negative track angle simultaneously, the x offset can be measured very accurately.
- Seems to be believable too - but still relatively large...
- If this method appears to look ok, I will write a script to find the minima of both distributions simultaneously, rather than estimating by eye.
- Can then get z-offset from this and use the track to measure x-offset directly.

TPC1/TPC5 Gap

- Nice peak, low stats though. (Single peak - no (or very small) x-offset?)
- Offset -0.6 cm .
- (Plot on right — relaxed selection, zoomed in on peak. Seems to confirm -0.6.)

TPC1/TPC5 Gap

- Although, splitting this up does imply a small x-offset...
- Still looks consistent with z-offset of -0.6 cm .

TPC1/TPC3 Gap

- Low stats, but looks like there's a x-offset here too.

TPC3/TPC7 Gap

- Again, very low stats, looks like there's a (small) x-offset...

Summary

- Measured the gaps, and also the x-offsets between the APAs.
- Does this seem reasonable?
- If so I'll do it again but more robustly!
- I've started looking at the location of charge deposited by APA-gap crossing tracks, but got sidetracked with the x-offset stuff;
- Update on this next week,
- Including some EVDs!

