First look at data and detector perfomances

WA105 Collaboration Meeting

22/03/2017

Laura Zambelli for the Laura's team (Molina Bueno & Manenti)

(and many others)

Channel numbering reminder

One SGFT holds 5 cards

One card reads 64 channels, divided in 2 connectors (32 channels each)

Each connector within a card connectors reads a different module

Channel numbering reminder

DAQ channels :

- \rightarrow Counting at the card level
- First card, first connector, first channel is DAQ #0
- Then DAQ channels increase from top to bottom in each cards.

<u>View channels :</u>

→ Counting at the CRP level using right-

handed coordinates

Origin at module 3 in both views

Channel numbering reminder - Mapping

Top connectors reads the lower side (X, view 0) / right side (Y, view 1) Bottom connectors reads the upper side (X, view0) / left side (Y, view 1)

Card	Card channels	DAQ Channels	View Channels X	View Channels Y
0	0~31 (top)	0~31	319~288	160~191
	32~63 (bottom)	32~63	159~128	0~31
4	0~31 (top)	256~287	191~610	288~319
	32~63 (bottom)	288~319	31~0	128~159

4 NB : View 0 channel numbering has been mirrored in order to have right handed coordinates

Problematic channels

View	SGFT	Card	Card Channel	DAQ Channel	View Channel
0	1	2	50	178	77
		3	5	197	218
			7	199	216
			46	238	49
		4	7	263	184
			8	264	183
			13	269	178
			19	275	172

View	SGFT	Card	Card Channel	DAQ Channel	View Channel
1	2	2	6	454	230
			25	473	249
		4	61	637	157
		3	29	541	285
		4	7	583	295
			11	587	299
	3	0	28	668	508
		1	34	738	354
	4	0	24	984	824

17 problematic channels out of 1280 \rightarrow 1.3%

Noise measurements

With the following conditions :

6

- PMT PS ON at 0V T probes and TC connected
- LEM PS ON at 0V Level Meter connected

- LED & Heaters disconnected
- Camera OFF & disconnected
- Cathode PS ON at 0V CRP motorization connected, 24V circuit is OFF

Lowest noise condition has a pedestal RMS of 1.74 ADC [run 686]

Noise measurements

- Pulsing connectors individually (group of 32 channels together).
- Or pulsing 20 connectors at the same time (at the calibration flange level)
- Each pulsing have been performed with an injection of 150 fC [~5mip]
- Signal contaminated with high frequency noise due to unshielded cable

run 367

FFT Filtering

The high frequencies can be easily removed with a cut in Fourier space without affecting the signal

Pulsed data - single connector pulsed, 2D view

- Some noise remains \rightarrow The cable has been changed to a shielded one meanwhile
- No strong cross talked observed (roughly 5%, see next slides)
- Counter connector in card seems to react to the pulse
- 10 Characterization of the anode in progress (Pin & Caspar, previous talk)

Pulsed data - single connector pulsed

11

Pulsed data - Different connectors pulsed

Looking at the integral of the waveforms in the pulsing time window in each channel SGFT 1 SGFT 2 SGFT 3 SGFT 4 Signal Integral (ADC counts) 0008 (ADC counts) 0009 (ADC counts) + run 371 run 372 + run 358 27 run 360 4000 2000 0 -200 200 400 600 800 0 **View Channel** →The amount of 319 SGFT 2 SGFT 3 SGFT SGFT [·] 2000 counts) cross talk in the Signal Integral (ADC 1000 other view seems 0 to be independent from the pulsing -1000 12 position -200 -3|9[°] 200 400 600 800 View Channel 0 ->

Pulsed data - All connectors in SGFT 2 & 3 pulsed

Using a different pulsing system, all channels in SGFT 2 & 3 were pulsed

Pulsed data - All conn. pulsed vs single conn. pulsed

Using a different pulsing system, all channels in SGFT 2 & 3 were pulsed Compared to single connectors pulsed but the injected signal may be different so no conclusions can be drawn from this plot at the moment !

Pulsed data - Counter reaction in the card ?

- Only 1% of problematic channels observed
- Low noise level measured [~1.74 ADC] and reproduced later
- Pulsed data show a cross talk of about 5%, which needs to be further studied
- Final pulsing system needs to be installed with the new shielded cable
- As we have extra time before data taking, more data should be taken ! (for example with different charge inputs)