#### Design of the Field Cage and Electrical components for Proto-DUNE Dual Phase

Animesh Chatterjee M.Hibbard, J. Yu, D.Zenger University of Texas at Arlington A.Gendotti, S. Murphy, L.M. Bueno ETH Zurich

WA105 Collaboration meeting March 22, 2017

#### Outline

- Overview of Proto-DUNE Dual-Phase (DP)-Field Cage (FC).
- High voltage divider board and the components
- Status of Field Cage production at UTA .
- Time-line and milestone
- Conclusion

#### **Overview of DP-FC**

- Total 8 modules.
- 2 modules in each detector side.
- Size of each module is 6.2m x 3.0 m.
- Each module is composed of 3 sub-modules.
- Each module has 98 profiles.
- Center to center distance between two profiles is 60mm.
- Profiles between two modules are connected with clip.



#### Field cage technical drawings



Detail mechanical structure : A.Gendotti's talk

#### Field Cage technical drawing



#### Detail in A. Gendotti's talk

## **High Voltage system**

How the high voltage system will look like to have 500 v/cm E field?

|              | Insulation space   | Voltage<br>(kV)  | Drift field<br>(kV/cm) |
|--------------|--------------------|------------------|------------------------|
|              |                    | 0                | 0                      |
|              | Anode              | -1(LU)<br>-4(LL) | 5                      |
|              | LEM                | -6.5             | 2.5                    |
|              | Extraction Grid    | -9.5             | 0.5                    |
|              | First field shaper |                  |                        |
|              |                    |                  |                        |
|              | -                  |                  |                        |
|              | -                  |                  |                        |
|              | •                  |                  |                        |
|              |                    |                  |                        |
|              | -                  |                  |                        |
|              |                    |                  |                        |
|              |                    | -300.5           | 0.5                    |
| Power supply | Last Field Shaper  | -303.5           | 0.5                    |
|              | Cathode            |                  | 6                      |
|              | Ground             |                  | 0                      |

## Voltage divider board: Outlook

- Goal to generate uniform electric field of 500V/cm across the drift volume.
- Design a printed circuit board
  - Easy installation, robust mechanical and electrical connection.
  - perform and survive in LAr for long time.
  - Use two columns of PCB board for redundancy.
- Divider board components :
  - Resistors : 2 resistors are in parallel in each stage to provide redundancy.
  - Varistors : Protect the circuit
    - High voltage discharge
    - In case both the resistor die.

#### Schematic diagram of a divider board



R= 2 Gohm, V= varistors, P1, P2, .. P11 connections with each profile

#### Divider board for 6x6 (in one column)

| Parameter                                              | Values                                | Note                                     |
|--------------------------------------------------------|---------------------------------------|------------------------------------------|
| Total number of profiles                               | 98                                    |                                          |
| Number of profiles in each sub module                  | 33, 33, 32                            |                                          |
| Number of profiles<br>connected with each PCB<br>Board | 11                                    |                                          |
| Number of stages                                       | 10                                    |                                          |
| Distance between two profiles                          | 60 mm                                 |                                          |
| Total number of PCB board for entire volume            | 10                                    |                                          |
| Length of each PCB board                               | (10x60 mm) + 15 mm+ 15<br>mm = 630 mm |                                          |
| Width and thickness                                    | 61 mm wide, 2mm thick                 |                                          |
| Current flowing                                        | 3 uA                                  |                                          |
| Resistance in each stage                               | 1 Gohm                                | 2 resistors in parallel (each of 2 Gohm) |
| Varistors in each stage                                | 3 varistors in series.                |                                          |
| Voltage drop between two profiles                      | 3 kV                                  |                                          |

#### Components of the divider board (one column)

| Elements                  | Values (unit)          | Part#      | Requirement for each board | #Total<br>(with spare) |                                                                                                                |
|---------------------------|------------------------|------------|----------------------------|------------------------|----------------------------------------------------------------------------------------------------------------|
| Resistors                 | 2 GOhm                 |            | 20                         | 200 (260 )             | Read and Re |
| Varistors                 | 3 varistors in series  | ERZV14D182 | 30                         | 300 (400 )             |                                                                                                                |
| Connections with profiles | M4 size brass<br>screw |            | 11                         | 110 (150)              |                                                                                                                |
| Nuts and washers          |                        |            | 11                         | 110 (150)              |                                                                                                                |

#### Requirements of the divider board

| Parameter                      | Values | units | notes                         |
|--------------------------------|--------|-------|-------------------------------|
| FC-resistance tolerance        | +- 1   | %     |                               |
| FC- total resistance tolerance | +- 1   | %     |                               |
| FC max voltage                 | 150    | %     |                               |
| Maximum heat generated         | 0.1    | Watt  | 0.9 mW in case of<br>500 V/cm |

#### 3D design of the divider board:Top layer

#### c:107.950 dx: 626.110 mm r:173.990 dy: 33.020 mm Top Layer inap: 1.27mm

- Divider board is 3 mm thick to have strong mechanical connection.
- Each stage will be electrically connected through copper tap, screws and metal washer

3 Varistors are in series

#### 2 GOhm Resistance in parallel

#### **Bottom layer: Close view**



**Resistors connections** 

3 varistors connected in series (ir parallel with resistors)



# Cases of divider board Failure **Resistors may die** R\*2\_Stage4 R#2\_Stage5 R\*1\_Stage4\_VAR\*2\_Stage4\_VAR\*3\_Stag<mark>e4\_VAR\*1\_Stage5\_VAR\*2\_Stage5\_VAR\*3\_Stage5\_VAR\*3\_Stage5\_</mark>VAR\*1\_St \*3\_Sta

Electrical connection with the profile may broke

Varistors may not work

#### **Redundancy : Two divider board in parallel**

- Redundancy
  - Two divider board in parallel
- 4 resistors in parallel of value 2 GOHm each.
- Total resistance in each stage = 0.5 GOHm.
- Current = 294 kV/0.5 Gohm = 6 uA.
- Current flow in case of one column of PCB board is 3 uA.
- Number of components will be double.



#### Advantage and disadvantage of having two boards in parallel

- Advantage : More effective in term of sustainability of electrical connection.
- Chances of failure will be much less.
- Disadvantage : More current flow, but within the limit of the current drawn by the supply.
- Double number of components, more costly.

It will better to have two board in parallel in-order to avoid of failure

## Field Cage production at UTA

- Our goal is to construct ~ 27 field cage submodules of size 2mx 3m.
- Pass the production readiness review scheduled on May 15,2017.
- Construct all 27 sub-modules by Sep 15, 2017.
- Complete the design, production and testing of all electrical components of divider board.

## Field Cage Project status at UTA

- FC mechanical design completed (Thanks to Adamo)
  - The drawing sent to the vendor
- Profiles have been shipped to UTA.
- First draft of QC and production readiness review is in place.

#### FC electrical component status

- Divider board design is completed.
  - Two column of PCB board.
  - The design has to be singed off
- Placed an order for Resistors (2 Gohm), Varistors.
- In the stage to place an order once board design signed off.
- Test all the components both in warm and cold

- Test the resistors select them according to the tolerance.

- Test the varistors .
- Test each stages of the divider board

### **Time-line and milestone**

- April 15, 2017
  - Complete production facility setup
  - Complete draft quality control and production procedure document for production readiness review.
  - Sign off the design of the resistive divider board.
- May 15, 2017
  - Procure the divider board.
  - Test the resistors and varistors both in warm and in cold.
    - Complete sub-module zero production.

## Time-line and milestone

- July 15, 2017
  - Complete sub-module 1-10 production
  - Complete resistive divider board testing in room temperature.
    - ship the sub-modules at CERN
- August 15, 2017

- Complete resistive divider board cold testing and final certification

- Complete sub-module 10-20 production.
- ship to CERN
- Sep 15, 2017
  - Complete sub-module 20-24 production.
  - ship to CERN

#### Conclusion

- Dual-Phase Field Cage design is finalized.
- Need to signed off the divider board design.
- Two divider board in two column will be appropriate to minimize failure.
- First goal is to pass the production readiness review and production of module zero.
- Production of sub modules at UTA and shipping within mid September.

# Comparison between PCB board in one and two column

| Components   | Value (unit) | PCB board in one column | PCB board in two column   | # of<br>components<br>required for<br>one column | # required for two column |
|--------------|--------------|-------------------------|---------------------------|--------------------------------------------------|---------------------------|
| PCB board    |              |                         |                           | 10                                               | 20                        |
| Resistors    | GOhm         | 1 Gohm in<br>each stage | 0.5 Gohm in<br>each stage | 200                                              | 400                       |
| Varistors    |              | 3 varistors in series   | 3 varistors in each board | 300                                              | 600                       |
| Current flow |              | 3 uA                    | 6 uA                      |                                                  |                           |

## What will happen to the discharge (breakdown)

- Lets consider cathode discharge to ground (due to some breakdown).
- Field cage profile has capacitance, so remain charged.
- Large resistance prevent charge redistribution in the field cage.
- The relaxation time of a single stage is = 1 Gohm \* 1 nF = 1 s.
- In this time the large voltage difference (much higher than resistors rating) will damage the resistors.
- Same thing will happen if any profile discharges.



#### With Varistors

- Varistors have noon I-V characteristics.
- During the discharge, the voltage difference will be much higher than the clamping voltage of the varistors
- The resistance will go be very low and voltage will be fixed at the clamping voltage.
- The relaxation will become very less and will be redistributed quickly.



• The voltage rating of the resistor should be higher than the clamping voltage of the varistors.

#### Without varistors



- With the varistors, the voltage never increases than the clamping voltage.
- It also helps G10 and argon breakdown.