

Light Readout Electronics Current Status

Cayetano Santos

WA105 Collaboration Meeting - CERN - 22-23 March 2017 On behalf of the IN2P3 group - ACP/Omega/LAPP

Outline

3 uTCA Support

FMC Board

Context	ASIC	uTCA Support	FMC Board	Summary
1 Conte	ext			
3 uTCA	Support			
FMC	Board			
5 Sumn	nary			
				CRIS

IN2P3

ASIC

uTCA Support

FMC Board

Summary

IN2P3 Collaboration

Joint Effort

Joint effort between several in2p3 labs in France

Omega Microelectronics Design Center for Physics and Medical Imaging - ASIC Development and testing

- LAPP Particle and Nuclear Physics PCB layout and routing
 - APC Cosmology and Astroparticle Physics ASIC testing, PCB schematics

IPNL Nuclear Phycis - General support, advice and firmware

ASIC

uTCA Support

FMC Board

Summary

IN2P3 Collaboration

Joint Effort

Joint effort between several in2p3 labs in France

Omega Microelectronics Design Center for Physics and Medical Imaging - ASIC Development and testing

- LAPP Particle and Nuclear Physics PCB layout and routing
 - APC Cosmology and Astroparticle Physics ASIC testing, PCB schematics

IPNL Nuclear Phycis - General support, advice and firmware

ASIC

uTCA Support

FMC Board

Summary

IN2P3 Collaboration

Joint Effort

Joint effort between several in2p3 labs in France

Omega Microelectronics Design Center for Physics and Medical Imaging - ASIC Development and testing

LAPP Particle and Nuclear Physics - PCB layout and routing

APC Cosmology and Astroparticle Physics - ASIC testing, PCB schematics

IPNL Nuclear Phycis - General support, advice and firmware

ASIC

uTCA Support

FMC Board

Summary

IN2P3 Collaboration

Joint Effort

Joint effort between several in2p3 labs in France

Omega Microelectronics Design Center for Physics and Medical Imaging - ASIC Development and testing

LAPP Particle and Nuclear Physics - PCB layout and routing

APC Cosmology and Astroparticle Physics - ASIC testing, PCB schematics

PNL Nuclear Phycis - General support, advice and firmware

ASIC

uTCA Support

FMC Board

Summary

IN2P3 Collaboration

Joint Effort

Joint effort between several in2p3 labs in France

- Omega Microelectronics Design Center for Physics and Medical Imaging - ASIC Development and testing
 - LAPP Particle and Nuclear Physics PCB layout and routing
 - APC Cosmology and Astroparticle Physics ASIC testing, PCB schematics

PNL Nuclear Phycis - General support, advice and firmware

ASIC

uTCA Support

FMC Board

Summary

IN2P3 Collaboration

Joint Effort

Joint effort between several in2p3 labs in France

- Omega Microelectronics Design Center for Physics and Medical Imaging - ASIC Development and testing
 - LAPP Particle and Nuclear Physics PCB layout and routing
 - APC Cosmology and Astroparticle Physics ASIC testing, PCB schematics
 - IPNL Nuclear Phycis General support, advice and firmware

ASIC

uTCA Support

FMC Board

Summary

IN2P3 Collaboration

Joint Effort

Joint effort between several in2p3 labs in France

- Omega Microelectronics Design Center for Physics and Medical Imaging - ASIC Development and testing
 - LAPP Particle and Nuclear Physics PCB layout and routing
 - APC Cosmology and Astroparticle Physics ASIC testing, PCB schematics
 - IPNL Nuclear Phycis General support, advice and firmware

(Micro)electronics front end for PMTs

ASIC

uTCA Support

FMC Board

Summary

Goals

Go beyond ASIC functionality

Integrate an state of the art, latest generation ASIC completed with a few FPGA advanced features

- Advanced: dead timeless monitoring system
- Digital event counting (not an ASIC feature)
- Endless (x-bits) time stamping

Implement Digital Pulse Processing

Perform advanced DSP on the samples with FPGA fabric

- Sampling of analog signals
- Compute falling tail, windowing, etc.
- Event rejection, pile up handling, etc.

ASIC

uTCA Support

FMC Board

Summary

Goals

Go beyond ASIC functionality

Integrate an state of the art, latest generation ASIC completed with a few FPGA advanced features

- Advanced: dead timeless monitoring system
- Digital event counting (not an ASIC feature)
- Endless (x-bits) time stamping

Implement Digital Pulse Processing

Perform advanced DSP on the samples with FPGA fabric

- Sampling of analog signals
- Compute falling tail, windowing, etc.
- Event rejection, pile up handling, etc.

ASIC

uTCA Support

FMC Board

Summary

Goals

Go beyond ASIC functionality

Integrate an state of the art, latest generation ASIC completed with a few FPGA advanced features

- Advanced: dead timeless monitoring system
- Digital event counting (not an ASIC feature)
- Endless (x-bits) time stamping

Implement Digital Pulse Processing

Perform advanced DSP on the samples with FPGA fabric

- Sampling of analog signals
- Compute falling tail, windowing, etc.
- Event rejection, pile up handling, etc.

ASIC

uTCA Support

FMC Board

Summary

Steps

First prototype developed in 2015

• Using former ASIC generation (ParisROC)

Second version under current development

- Newest ASIC generation (CatiROC)
- Bug fix release

Production release 2018

• Double width AMC, 32 channels, ...

ASIC

Context

uTCA Support

FMC Board

Summary

Steps

First prototype developed in 2015

• Using former ASIC generation (ParisROC)

Second version under current development

- Newest ASIC generation (CatiROC)
- Bug fix release

Production release 2018

• Double width AMC, 32 channels, ...

ASIC

Context

uTCA Support

FMC Board

Summary

Steps

First prototype developed in 2015

• Using former ASIC generation (ParisROC)

Second version under current development

- Newest ASIC generation (CatiROC)
- Bug fix release

Production release 2018

• Double width AMC, 32 channels, ...

4 FMC Board

(ASIC)

uTCA Support

FMC Board

Summary

CatiROC

Fast and Slow Shapers - Two capacitors / channel AMS SiGe 0.35 um - 13.2 mm2 - TQFP208

Architecture

Block Diagram

uTCA Support

FMC Board

Summary

CatiROC features

Detector Read-Out	PMTs
Number of Channels	16
Signal Polarity	negative
Sensitivity	voltage
Timing	Time stamp: 26 bits counter @40 MHz
	Fine time: resolution < 100 ps (simulation)
	A TDC ramp for each channel
Charge Dynamic Range	160 fC up to 100pC
Trigger	Triggerless acquisition
	Noise=5 fC; Minimum threshold= 25 fC (50)
Digital	Conversion: 10 bits ADC at 160 MHz
	Two Read out: 80 MHz
	Read out frame: 50 bits
	2 frames of (29+21) bits
	1st frame/8chs: Ch nb= 3; coarse time= 26
	2nd frame/8chs: Gain used= 1; Charge converted= 10, Fine time converted= 10
Packaging & Dimension	TQFP 208 (28x28x1.4 mm)
	die : 3.3 mm x 4 mm
Power Consumption	30 mW/channel
Outputs	16 trigger outputs
	NOR16
	16 slow shaper outputs
	Charge measurement over 10 bits
	Time measurement over 10 bits
Main Internal	Variable preamplifier gain
Programmable Features	Shaping time of the charge shaper (variable shaping and gain)
	Common trigger threshold adjustment
	Common gain threshold adjustment

Some specifications

311	Pw_Slow_lvds_receiv_P	Force ON or Power pulsing mode (see table 5 in § 2.2.3)	
312	Sw_40MHz_lvds	switch off 40MHZ and 160MHz lvds receivers (0 = OFF, 1=ON)	1 (ON)
313	Sw 160MHz lvds	switch off 160MHZ lvds receiver (0 = OFF, 1=ON)	1 (ON)
314	sel_clkDiv4	select ext. (0) or int. (1) 40MHz (int = 160MHz/4, ext : LVDS Receiver)	1 (internal)
315	sel_80M	Select readout clock (0= input clk, 1 = input clk/2) but always 80MHZ	1 (160MHz / 2)
316	Dis_ovfCpt	Disable buffer for overflow of Timestamp counter (0 = en, 1 = dis)	1 (disable)
317	sel ext Raz channel	0= internal Raz, 1= external Raz (for debugging)	0 (internal)
318	Not used		
319	sel ext Read	0= internal Read, 1= external Read (for debugging)	0 (internal)
320	EN_TacReadout	Enable readout of Tac data : 0= no Data, 1= data readOut	0 (no data)
321	EN_NOR16	Enable output buffer for NOR16 : 0= disable, 1= enable	1 (enable readout)
322	EN_transmit	Enable output buffers for transmit on : 0= dis., 1= enable	1 (enable readout)
323	EN_data_oc	Enable output buffers for data readout : 0= dis., 1= enable	1 (enable readout)
324	Dis_trigger	disable buffers for triggers : 0 = enable, 1 = disable	0 (enable triggers)
325	Pw_lvds_transmitter_EN	Enable LVDS transmitters for DATA output	10 (ON)
326	Pw_lvds_transmitter_PP	Force ON or Power pulsing mode (see table 5 in § 2.2.3)	
327	Sw_1mA_TX	Increase bias current in data transmitter (+1mA and +	11
328	Sw_2mA_TX	2mA) 0 =OFF. 1= ON	(+1mA+2mA

• I/O 1-bit shift register

• 328 bits to setup

(ASIC)

uTCA Support

FMC Board

Summary

CatiROC facts

16 channels readout chip for PMTs with fully independent charge and time measurements

16 negative inputs: each voltage input is sent to high/low noise amplifiers for small and large signals to ensure a good charge precision (30 fC)

Variable 8 bit gain / amplifier / channel

Charge: preamp followed by 2 variable slow shapers sent to analog memories to measure up to 50pC

Time: coarse + fine timing

10 bits Wilkinson ADC to convert charge and fine time @ 160 MHz

A fast shaper / channel followed by a discri for auto-trigger. One common 10 bit threshold

Digital section handles the acq, conversion and readout, providing a 26 bits coarse time measurement (TS)

(ASIC)

uTCA Support

FMC Board

Summary

CatiROC facts

16 channels readout chip for PMTs with fully independent charge and time measurements

16 negative inputs: each voltage input is sent to high/low noise amplifiers for small and large signals to ensure a good charge precision (30 fC)

Variable 8 bit gain / amplifier / channel

Charge: preamp followed by 2 variable slow shapers sent to analog memories to measure up to 50pC

Time: coarse + fine timing

10 bits Wilkinson ADC to convert charge and fine time @ 160 MHz

(ASIC)

uTCA Support

FMC Board

Summary

CatiROC facts

16 channels readout chip for PMTs with fully independent charge and time measurements

16 negative inputs: each voltage input is sent to high/low noise amplifiers for small and large signals to ensure a good charge precision (30 fC)

Variable 8 bit gain / amplifier / channel

Charge: preamp followed by 2 variable slow shapers sent to analog memories to measure up to 50pC

Time: coarse + fine timing

10 bits Wilkinson ADC to convert charge and fine time @ 160 MHz

A fast shaper / channel followed by a discri for auto-trigger. One common 10 bit threshold

Digital section handles the acq, conversion and readout, providing a 26 bits coarse time measurement (TS)

(ASIC)

uTCA Support

FMC Board

Summary

CatiROC facts

16 channels readout chip for PMTs with fully independent charge and time measurements

16 negative inputs: each voltage input is sent to high/low noise amplifiers for small and large signals to ensure a good charge precision (30 fC)

Variable 8 bit gain / amplifier / channel

Charge: preamp followed by 2 variable slow shapers sent to analog memories to measure up to 50pC

Time: coarse + fine timing

10 bits Wilkinson ADC to convert charge and fine time @ 160 MHz

A fast shaper / channel followed by a discri for auto-trigger. One common 10 bit threshold

Digital section handles the acq, conversion and readout, providing a 26 bits coarse time measurement (TS)

(ASIC)

uTCA Support

FMC Board

Summary

CatiROC Checkout Testbench

• USB / FPGA controlled

- Fanout board for timing, crosstalk, etc.
- Arbitrary Pulse Generator
- High gain (10⁷) PMT
- Histogramming oscilloscope

FMC Board

Summary

Testbench coding

Firmware

			Data	Internals	Releases	Troubleshooting		(Colopse all) (Expend all)
		,						
ata								
	\ e	We get data out of catif vent word. The binary	tOC on data for	16 channels i mat is just a s	n triggerless requence of p	mode. Each physical hysical events words	event is convert r.	ad into a 64 bits physical
For	mat							
	1	atiROC sends informa o further monitor the at physical event, which	tion abo quisition is to be	ut fine and co n, an event co decoded as e	xarse time, cl unter per chi explained bei	harge, channel numb annel is appended. A sw.	er and gain (scal II of this informat	 a). Additionally, in order on sums up to 64 bits for
	F	inally, every 32k physi dditional information (t	:al even rigger ra	ts, 16 *specia te, etc.) comp	l" events (on outed online.	e by channel) are inje	acted into the dat	a flow. These include
	1	he data format is the f	lowing					
	F	hysical event word, i	i4 bits					
	1	7 - Gain (1 bit) - Ch.Nb	(4 bits)	- Coarse Tin	ne (26 bits) -	EventCounter (12 bit	s) - Fine Time (1	bits) - Charge (10 bits)
	\$	pecial information w	ord, 64	bits				
		" - '0' - Ch.Nb. (4 bits)	0 (47 b	its) - TriggerF	Rate (11 bits)			
	F	rom this, it is evident t	hat the li	eftmost bit mu	ist be used to	distinguish betweer	physical and "sp	ecial" events.
Info	ormatio	n						
	1	he next fields correspo	nd to in	formation pro	vided by cati	ROC itself		
		Nain - scale						
		carse time - time unit	s in 25 r	is, steps				
		Terre Marcon discon eductor or	ithin the	25 ne. time v	rinders			

Software

CatiROC test GU

etra Instali Start Data Internali Use Releases Troubleshooting License Table of Contents

Internals

Here it is inducted information useful to manipute the test eetup avoiding the use of the GUL which is full up on top of what blows. This information might be useful for implementing specific lasts, for developing software or for automatizing measurements with usation society.

First, the low level software details are provided. This remains at a C language level, on top of which any other high level tansuage must be used. Here, Mattab is used as a high level tansenock for data manipulation and displaying

Low level software

High level communication model

It is assumed the user transfers on array of bytes (the command.) to the card using the Write method. First byte in array consequed to the order to be executed; metal-ing bytes consequed to command parameters. Last byte is executed to always be TWT code document. Then uson receptor of a command, the card will recept to concerted.

Note that summity commands are limbed to 128 bytes, but this limit may be removed by splating the firmware. This software is approxic with this respect.

List of implemented command

Follows a list of all carrendly implemented functionalities in the fitneware. First, these are provided only for testing the communication with the hardware

 '01' - rotums as up counter, amount of tytes is given by bytes 2 to 5 in command only 102' -rotums as writtens up counter 102' -rotums the command cent.

OD - NOTINE RECOMMENDED AND

Next commands implement the communication with the ASIC

'00' - returns ASIC data, used by the "DelASICData" method
 '01' - returns ADIC data

Online @ https://catiroc-test.gitlab.io/gui

• Full stack

• From scratch

Light Readout Electronics Current Status

FMC Board

Summarv

Testbench coding

Firmware

	[Origon al]							
nu o	Instan	Project structure	Data	internais	Neveases	noobleshooting	License	
ata								
For	V e	We get data out of catifivent word. The binary	tOC on data for	16 channels i mat is just a s	n triggerless æquence of p	mode. Each physical physical events words	event is corrve s.	rted into a 64 bits physical
	C te a	atiROC sends informs o further monitor the ac physical event, which	tion abo quisition is to be	out fine and o n, an event of decoded as (oarse time, d ounter per ch explained bel	harge, channel numb annel is appended. A low.	er and gain (sc II of this informi	ale). Additionally, in order ation sums up to 64 bits for
	F	Finally, every 32k physical events, 16 "special" events (one by channel) are injected into the data flow. These include additional information (trigger rate, etc.) computed online.						
	т	he data format is the f	lowing					
	P	hysical event word, i	14 bits					
	τ	7 - Gain (1 bit) - Ch.Nb	(4 bits) - Coarse Tir	ne (26 bits) -	EventCounter (12 bit	s) - Fine Time (10 bits) - Charge (10 bits)
	s	pecial information w	ord, 64	bits				
	*	' - '0' - Ch.Nb. (4 bits)	0 (47 t	its) - Triggerf	Rate (11 bits)			
	F	rom this, it is evident t	hat the I	eftmost bit m	ust be used t	o distinguish betweer	physical and "	special" events.
Info	ormation	n						
	т	he next fields correspo	nd to in	formation pro	wided by cati	ROC itself		
	0	kain - scale						
		carse time - time unit	s in 25 r	ns. steps				
		ine time - time slote u	ithin the	25 me times	window			

Software CatiROC test GU Internals First, the low level software details are provided. This remains at a -C language level, on top of which any other high Low level software High level communication model It is assumed the user transfers an array of bytes (the command) to the card using the Write method. First byte in array corresponds to the order to be executed, remaining bytes correspond to command parameters. Last byte is Note that summity commands are limited to 128 bytes, but this limit may be removed by spotsing the firmwares. This pofware is apposite with this respect. Follows a list of all carrently implemented functionalities in the fitneware. First, these are provided only for testing the + 1011 - roturns an ap counter; amount of bytes is given by bytes 2 to 5 in command among · '05' - roturns the command sent Next commands implement the communication with the ASIC '00' - returns ASIC data, used by the "DelASICData" method '01' - returns ADIC data Online @ https://catiroc-test.gitlab.io/gui • Full stack

• From scratch

Light Readout Electronics Current Status

Testbench data taking

- Low level software in C++
- Gui / data processing in Matlab
- Windows / Linux
- Amplitude histogramming
- Timing histogramming
- Data recording
- Fitting, etc.

uTCA Support

FMC Board

Summary

CatiROC Timing ...

For each event, compute Δt between two channels experiencing different delays

 Δt mean value is set by cable length Δt RMS is an estimate of time resolution

Time difference between channels is: + insensitive to pulse generator jitter + insensitive to systematics common to all channels (intra-channel correlation)

Assuming no correlation: σ_T (single channel) = RMS / $\sqrt{2}$

Conservative estimation: σ_T (single channel) ~ RMS

- Single rate digital pulse generator
- Signal is splitted to 4 channels
- Different cable lengths are used
- Raw data saving
- Computing time differences
- Cables are rotated: four data sets

(ASIC)

uTCA Support

FMC Board

Summary

\dots less than ~250 ps

- Coherent between data sets
- Timing independent of channel
- Independent of capacitor in ch.
- Method takes into account all non linearities
- Single ch. timing worst due to p.g. jitter
- Less than ~400 ps ch.

to ch.

Context	ASIC	UTCA Support	FMC Board	Summary
Contex	‹t			
3 uTCA	Support			
I FMC E	Board			
5 Summ	ary			

ASIC

(uTCA Support)

FMC Board

Summary

Prototyping crate - Native C1

- Low cost, 1u 19' rack-mounted MTCA Chassis
- 1 MCH 6 AdvancedMC (AMC) 1 Power module (PM) slots
- Maximum 80W per AMC slot

- 1 GbE routed to AMC Port 0 kTCLKA, TCLKB, and FCLKA to each AMC
- Point-t-point SATA/SAS Port 2 & 3 Fabrics D, E, F, G Port 4-7

CNrs

ASIC

(uTCA Support)

FMC Board

Summary

Mother board - S4 AMC

- Altera Stratix IV GX FPGA
- I BittWare's FINe[™] Host/Control Bridge
- 10/100/1000 Ethernet, SerDes, LVDS, RS-232, and JTAG
- 2 GBytes of memory
- Fully connected to AMC (16 ports SerDes, 4 ports GPIO)
- I VITA 57 FMC site for I/O expansion
- I Six clocks

ASIC

(uTCA Support)

FMC Board

Summary

Mother board - S4 AMC - Block Diagram

- Altera Stratix IV GX FPGA
- I BittWare's FINe[™] Host/Control Bridge
- 10/100/1000 Ethernet, SerDes, LVDS, RS-232, and JTAG
- 2 GBytes of memory
- Fully connected to AMC (16 ports SerDes, 4 ports GPIO)
- I VITA 57 FMC site for I/O expansion
- I Six clocks

FMC Board

Summary

Production crate

Probably to be used during the experiment - Currently under discussion

- 12 double width slots
- 2 MCH slots
- Dedicated hardware for synchronizing
- Developed by / image from IPNL

Context	ASIC	uTCA Support	(FMC Board)	Summary
Contex	‹t			
3 uTCA	Support			
4 FMC E	Board			
5 Summ	ary			

ASIC

uTCA Support

(FMC Board)

Summary

First prototype of FMC board

Printed Circuit

Top view

ParisROC ASIC + ADC

Bottom view

FMC connector

ASIC

uTCA Support

(FMC Board)

Summary

First prototype of FMC board

Printed Circuit

Top view

ParisROC ASIC + ADC

Bottom view

FMC connector

ASIC

uTCA Support

(FMC Board)

Summary

First prototype of FMC board

ASIC

uTCA Support

(FMC Board)

Summary

First prototype of FMC board

ASIC

uTCA Support

(FMC Board)

Summary

First prototype of FMC board

ASIC

uTCA Support

(FMC Board)

Summary

Current prototype - Schematics

- Low pass filtering
- ADC9249, 65 MHz, 14 bits
- CatiROC ASIC 16 ch.
- Power management
- 4 Spare signals
- VITA 57 FMC connector

ASIC

uTCA Support

(FMC Board)

Summary

Block Diagram

- Splitting of analog inputs
- Anti aliasing filter
- Analog processing in ASIC
- Samples go to FPGA
- Readout of data from ASIC to FPGA
- Data is merged and processed in FPGA

ASIC

uTCA Support

(FMC Board)

Summary

How to bring 20 signals in a reduced space

Bunch of 20 cables

30 cm. length

SMA standard

SMA female

Light Readout Electronics Current Status

ASIC

uTCA Support

(FMC Board)

Summary

How to bring 20 signals in a reduced space

Bunch of 20 cables

30 cm. length

SMA standard

SMA female

Light Readout Electronics Current Status

ASIC

uTCA Support

(FMC Board)

Summary

How to bring 20 signals in a reduced space

Bunch of 20 cables

30 cm. length

SMA standard

SMA female

To be plugged to RG58 cabling from splitter box

through a male SMA connector

ight Readout Electronics Current Status

Context	ASIC	uTCA Support	FMC Board	Summary
Con	text			
3 uTC	CA Support			
FM	C Board			
5 Sum	nmary			
				CONS IN2P3 Les deux infinis

Conclusions

• Work in progress ...

- ASIC fully characterized: good timing -> done
- Board schematics -> done
- End of routing by the end on March
- Board production during April
- ADC data capture firmware -> done
- ASIC control and data capture firmware -> done

But still an open issue

Conclusions

• Work in progress . . .

• ASIC fully characterized: good timing -> done

- Board schematics -> done
- End of routing by the end on March
- Board production during April
- ADC data capture firmware -> done
- ASIC control and data capture firmware -> done

But still an open issue

Summary

Conclusions

- Work in progress . . .
- ASIC fully characterized: good timing -> done
- Board schematics -> done
- End of routing by the end on March
- Board production during April
- ADC data capture firmware -> done
- ASIC control and data capture firmware -> done

But still an open issue

Summary

Conclusions

- Work in progress . . .
- ASIC fully characterized: good timing -> done
- Board schematics -> done
- End of routing by the end on March
- Board production during April
- ADC data capture firmware -> done
- ASIC control and data capture firmware -> done

But still an open issue

Summary

Conclusions

- Work in progress . . .
- ASIC fully characterized: good timing -> done
- Board schematics -> done
- End of routing by the end on March
- Board production during April
- ADC data capture firmware -> done
- ASIC control and data capture firmware -> done

But still an open issue

Summary

Conclusions

- Work in progress . . .
- ASIC fully characterized: good timing -> done
- Board schematics -> done
- End of routing by the end on March
- Board production during April
- ADC data capture firmware -> done
- ASIC control and data capture firmware -> done

But still an open issue . . .

Summary

Conclusions

- Work in progress . . .
- ASIC fully characterized: good timing -> done
- Board schematics -> done
- End of routing by the end on March
- Board production during April
- ADC data capture firmware -> done
- ASIC control and data capture firmware -> done

But still an open issue ...

Conclusions

- Work in progress . . .
- ASIC fully characterized: good timing -> done
- Board schematics -> done
- End of routing by the end on March
- Board production during April
- ADC data capture firmware -> done
- ASIC control and data capture firmware -> done

But still an open issue ...

Summary

Conclusions

- Work in progress . . .
- ASIC fully characterized: good timing -> done
- Board schematics -> done
- End of routing by the end on March
- Board production during April
- ADC data capture firmware -> done
- ASIC control and data capture firmware -> done

But still an open issue

