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Electric field in the TPC

In order to properly reconstruct the charge, the electric field in the fiducial volume has to be known

precisely.
In theory, a uniform electric field [from 0.5 to | kV/cm] is applied.
In reality, the electric field is not constant inside the volume due to border effects.

Also, the so-called space-charge effect can locally distort the electric field :

The Ar™ cloud produced together with the electrons will slowly drift to the cathode and locally screen

the applied electric field.

In a dual phase configuration, a second Ar™ produced in the amplification region increases the effect.
L It is assumed that not all ions will back flow to the liquid (current assumptions is O or 10%)
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COMSOL simulations

Detalled COMSOL simulations of the 3x x| and 6x6x6 detectors has been performed with different

configurations:
- Applied electric field of 0.5 and | kV/cm

- no 1on back flow and 0% ion back flow assumed

For each simulation, the electric field components (Ex, Ey, Ez) is stored in voxels of

- 10x10x10 cm? for the 3xI x| detector
- 20x20x20 cm? for the 6x6x6 detector

Trajectories of electrons produced near the cathode to the anode from COMSOL electric field simulation
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Fleld Map generation & usage

From the COMSOL output, "drift" electrons from each voxel to the anode by steps of | mm.

The direction of the electrons depends on the field component at each steps.

The field is assumed to vary smoothly and linearly, therefore 3D interpolation is used (weighted mean) and
a special care Is needed for voxels at the edges (where no 3D interpolation is possible)

The maps provide, for each voxels :
Ex, By, Ez, Drift Time, Drift Length, CRP x-, y-, z- coordinates
in a root file (3D histograms) — Can be read by any LArTPC simulation soft (QScan, LArSoft, ...)
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Field Map inter(extra)polation - dri
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Effect on crossing muon measured track

3 GeV muon crossing the 6x6x6 detector, field at 500 V/cm
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Fleld Map update with diffusion

— Introduce the transverse and longitudinal diffusion to the maps
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P = \/372 =+ y2 D7 are diffusion coefficient depending of E.
2
O-L,T — QDL,Tt u is the mobillity of the drifting electrons
€ Is the electron energy
Vd = U X i) The key is to find a good parametrization of the diffusion

coefficient as a function of E.
DL,T — &L, T X M(E) Many references available from theoreticians /

henomenologists but very few data available.
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A simplistic parametrization of Dyt was implemented

following NEST prescription
7 M Szydagis et al 2013 JINST 8 C10003



Parametrization of Dy 1 as a function of E

Following the results of this recent paper :

~ 2
Measurement of Longitudinal Electron Diffusion in Liquid Argon Dy r(E —0) ~3.88 cm”/s

NIMA 816 (2016) 160—170 [1508.07059] Dpr=eérrxp
= E€rL,T X ?Jd/E
The electron longitudinal energy and the electron mobility has been Dr 4 E ou
- measured in GAr and LAr at different electric fields [O.] to 4 kV/cm] Dr u OFE

- parametrized with polynomial functions

Using this parametrization and the formulas, we can have a description of transverse & longrtudinal diffusion
coefficients as a function of E.
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Electron drift velocity/mobility parametrization (v=Etu)

g — In QScan the dnift velocity is parametrized with
= T - ICARUS for E < 0.5 kV/cm
2 - Walkowiak for higher field
15
= — Not in agreement with Li measurements for
'E fields > 0.5 kV/cm
05F
ol | | - | | L
0.5 1 1.5 2 2.5 3
E (kV/cm)
T For Diffusion coefficients computation in QScan,

use our drift velocity definition for the mobility,
making sure that the mobility do not diverge at
low field
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From litterature u(E=0) = 518 cm?/(Vs)




tlectron energy

Playing with the formulas, transverse electron energy can be retrieve and parametrized with polynomials, as
for the longitudinal electron energy.
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Diffusion coefficient parametrization

Dotted line : this parametrization
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- Breaking point at 100V/cm for DI with NEST
- Difference between Li and this parametrization is due to a different drift velocity parametrization
- DI'and Dt converges at low field

1500 V/cm)] This work (TDR value) Diffusion for 1 m drift Diffusion for 6 m drift
Longitudinal Dy = 6.7 cm?/s 4 cm? /s or, = 0.57 us or = 1.40 us
11 Transverse Dr = 13.6 cm?/s 13 cm?/s or = 1.3 mm or = 3.2 mm



Diffusions added in the field maps
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H. Konari

Fvaluation of space charge effect In the 6x6x6

Use beam events assuming that the beam entering position and direction is well known
Compare z-displacement between ideal beam track to the reconstructed track
— Simple analysis at the moment as x-y displacements are not yet taken into account

Simulation with :

5 — Beam direction >00Viem
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Evaluation

of space charge e

Uniform Field

fect In the 6x6x6

Field Map, 10% of back flow
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Fvaluation of space charge e

cC

- IN the 6x6x6

H. Konari
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https://indico.fnal.gov/getFile.py/access?contribId=3&resId=0&materialId=slides&confId=13872

Perspectives

Although no strong field distortions is expected in the 3xIxI, the data will be a great opportunity to
understand and map the field inside the tank.

Some analysis as Konari-san started should be also possible in the 3xIxI :
- Ideal track retrieved with the CRT information.

- through going muons ideal track predicted by extrapolating the entering direction (close to the anode

where the effects are expected to be small)
-

For the 6x6x6, where the effects are expected to be bigger and measurable :

- Using Konari-san's method, the existence of space charge effects can be assessed (to the extent of beam
spread and divergence)

- Should developed other methods with the CR tracks
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