

Effect of LEM borders, screw holes and HV connectors on collection charge efficiency

Philippe COTTE

March 23, 2017

Main question WA105 LEM geometry

Study

Border, screw holes, HV connectors : What is their impact on charge collection and charge resolution?

Philippe COTTE | Effect of LEM border, screw holes and HV connectors on collected charge

Main question Motivation : LAr LEM-TPC

A. Badertscher, ArXiv:1301.4817v1 [physics.ins-det] 21 Jan 20.

1.6mm

200L DLAr LEM-TPC 40 × 76 cm² readout

250

150 200 view 0: strip number

Rectangular LEM with 1.6 mm gap between each LEM \Rightarrow Absence of charge at LEM border

- 1. Simulate the electric field close to the border, screw holes and HV connectors (done with ANSYS)
- 2. Simulate the electrons drifting toward the LEM in those region, compute collection efficiency depending on initial electron position (done with GarField)
- 3. Create an efficiency map for a typical LEM of $49.95 \times 49.95 cm^2$ (done with Root)
- 4. Simulate events in $6 \times 6 \times 6$ and compare charge and charge resolution with/without efficiency (done with QScan)

Geometry : example of 2D model

Figure: 2D modelisation of a LEM border

Geometry : example of 2D model field, potential and drift of 10 electrons

Philippe COTTE | Effect of LEM border, screw holes and HV connectors on collected charge

Calculating transmission efficiency

End point of electron path used as condition :

- Consider any electron reaching amplification zone as collected
- Kill electron reaching bottom LEM on dead zone (border, srew, HV connector)
- Compare initial position of all electrons to initial position of collected electrons (ratio of histograms collected/generated)

Geometry : 3D models Border, corner, screw hole and HV connector

Philippe COTTE | Effect of LEM border, screw holes and HV connectors on collected charge

Drift of 10000 electrons on LEM border

uniformly distributed at bottom of the geometry

Drift of 10000 electrons on LEM border

uniformly distributed at bottom of the geometry

Fit function : $\sim arctan(-x)$

Results for 3D models

Border, corner, screw hole and HV connector

Results for 3D models

Border, corner, screw hole and HV connector

Results for 3D models

Border, corner, screw hole and HV connector

Computing efficiency in pixels

 Pixel efficiency computed by integrating histogram pixel by pixel (pixel=3.125 × 3.125mm²)

Philippe COTTE | Effect of LEM border, screw holes and HV connectors on collected charge

Efficiency map for one LEM

Philippe COTTE | Effect of LEM border, screw holes and HV connectors on collected charge

Modification of Qscan in WA105Soft/crp/src/QProjector.cc

Originally :

Modification of Qscan in WA105Soft/crp/src/QProjector.cc

Now :

And then again split in strips (since it is what the detector will eventually give us)

Simulating events with Qscan

Possibility to specify efficiency pixel by pixel (computation time +15%)

Simulating events with Qscan

- Possibility to specify efficiency pixel by pixel (computation time +15%)
- Efficiency map read as TH2D once fore each event (no impact on computation time)

Simulating events with Qscan

- Possibility to specify efficiency pixel by pixel (computation time +15%)
- Efficiency map read as TH2D once fore each event (no impact on computation time)
- Possibility to record charge with or without efficiency map

- Possibility to specify efficiency pixel by pixel (computation time +15%)
- Efficiency map read as TH2D once fore each event (no impact on computation time)
- Possibility to record charge with or without efficiency map
- Compare charge distribution with "perfect" (no efficiency map) and "real" (with efficiency map) LEM for different particles and momenta

1000 particles simulated

Electrons, muons, kaons, pions and protons

- Initial momentum fixed
- ► Direction random in 4π
- Initial position at z = 0
- ► and (x, y) ∈ [-50; 50]cm

Results Charge distribution for electrons at different momenta

Relative dispersion of collected charge

Results Charge distribution for negative pions at different momenta

Relative dispersion of collected charge

Results Charge difference of different particles

Results Charge dispersion of different particles

 Effect on resolution small on most particles above 1 GeV/c Except electrons : resolution doubled

- Effect on resolution small on most particles above 1 GeV/c Except electrons : resolution doubled
- Effect on total charge can be well known

- Effect on resolution small on most particles above 1 GeV/c Except electrons : resolution doubled
- Effect on total charge can be well known
- ► Dead zone between LEMs : 4 + 4 + 0.5 = 8.5mm, screw holes : 6mm, HV connectors : 10mm ⇒ vertex happening in those zones can be difficult to analyse, especially showers

Thank you!

Philippe COTTE | Effect of LEM border, screw holes and HV connectors on collected charge