Update on the FC electrical components

Animesh Chatterjee, Jae Yu, Michael Hibbard UTA HEP Group 01/03/2017

Outline

- Redundancy of a single PCB board : Chances of failure
- Alternate PCB board design
- Design finalization
- Understanding of varistors
- Conclusion

Chances of PCB board Failure

All possible conditions for a single stage to failure.

Condition	Function of PCB board	Note
If only resistors die in a stage or many stages	Current will flow through the varistors.	No failure of PCB board.
If only varistors die.	Current will flow though the resistor.	No failure of PCB board.
If both resistors and varistors die	Open circuit condtion	Failure of PCB board.
Circuit board failure	No current will flow	Entire chain will be disconnected

Failure rate of the PCB board

• Resistors failure :

-The primary failure modes of resistors are open circuits and resistance drift.

-In case of 2 GOhm resistors (below 2 watt power consumption) the probability of failure is less than 1%.

• Varistors failure :

- The varistor short circuits when an overpotential caused by lightning surges is applied to it.

Circuit board failure

• Environmental problem :

- Temperature, dirt, debris.
- electrostatic discharge.
- Manufacture problem :
- The failure rate (probability) of PCB board is very small, less than 0.1% (once it has been tested after production).

Failure rate calculation

• Series Network : λ is the failure rate of each component.

Figure 1. Series Network

• Parallel network :

Failure Probability of PCB board

Components	Failure probability	Note
1. Each Resistors in a stage	P= 0.5%= 0.005	If one of the resistor fails, still the circuit will be on.
2. Two Resistors in parallel	P_res = 2*P/3 = 0.003	If both of them die, still current will flow through the varistors.
3. 3 varistors in series	P_var = 3*0.005 = 0.015	Current will flow through the resistors
4.Failure rate of the components in single stage	P_com =0.0025	No current flow
5. Failure of trace in single stage	P_t = 0.001	No current flow
6. Failure rate of single stage	P_s = 00.001*0.0025	
7.Failure rate of a PCB board	P_pcb = 10*P_s	

Alternate design : Two PCB board in parallel

- Two PCB board in parallel.
- 4 resistors in parallel of value 2 GOHm each.
- 1 Gohm in each PCB board, total resistance in a stage will be 0.5 Gohm.
- Current = 294 kV/0.5
 Gohm = 6 uA.
- Number of components will be double.

Advantage and disadvantage

- Advantage : More effective in term of sustainability of electrical connection.
- Chances of failure will be very less.
- Probability of failure will be drop by a factor of half.
- **Disadvantage** : More current flow.
- Double number of components, more costly.

Price estimate

Elements	Values (unit)	Part#	Requireme nt for each board	#Total (with spare)	Price for a one board	Price for two board parallel
Resistors	2 GOhm	SM102032007F E	20	200 (260)	\$600.00	\$1200.00
Varistors	3 varistors in series	ERZV14D 182	30	300 (400)	\$700.00	\$1400.00
Connecti ons with profiles	M4 size brass screw		11	110 (150)		
Nuts and washers			11	110 (150)		
PCB board			1	10		

Cost will not be huge, may be extra \$5000 for the two board in parallel

Latest design of the PCB board

• **Option 1:** Single PCB board through the entire FC

- Extra 0.5 mm tolerance at copper connection with the profile.

- thickness of the PCB board 5 mm.

- Option 2: Two 2 PCB board in parallel.
 - Components will be same, number will be double

Varistors : Why MicroBooNE has used

- Main purpose of using the varistors
 - Circuit works if any case resistor dies.
 - protect the circuit from discharge.
- Protection during discharge :

What will happen to the discharge (breakdown)

- Lets consider cathode discharge to ground (due to some breakdown).
- Field cage profile has capacitance, so remain charged.
- Large resistance prevent charge redistribution in the field cage.
- The relaxation time of a single stage is = 1 Gohm * 1 nF = 1 s.
- In this time the large voltage difference (much higher than resistors rating) will damage the resistors.
- Same thing will happen if any profile discharges.

With Varistors

- Varistors have noon I-V characteristics.
- During the discharge, the voltage difference will be much higher than the clamping voltage of the varistors
- The resistance will go be very low and voltage will be fixed at the clamping voltage.
- The relaxation will become very less and will be redistributed quickly.
- The voltage rating of the resistor should be higher than the clamping voltage of the varistors.

	Current	TPC voltage	Spark condition
		,	Voltage
/			

Without varistors

- With the varistors, the voltage never increases than the clamping voltage.
- It also helps G10 and argon breakdown.

Conclusion

- We have to finalize whether we will use only single or two PCB board in parallel.
- All other components will be the same.
- Varistors are necessary for the safety in case of discharge.
- We will place order for the components and the PCB board once it is finalize.
- Any issue missing?