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Consider  two  identical  radio  receivers  at  the  same  altitude  a  distance d  in  the x  direction  apart  and  an

unresolved  source  in  direction Sin[θ] x +Cos[θ] z
 where  

z
 is  the  vertical  direction.   By  unresolved  we

mean that the angular size of the source obeys ϑ ≪ λ /d where λ is the wavelength of the radiation one is

detecting.   If  E0[t]  is  EM  time  stream  which  would  be  received  at  the  midpoint  then  the  EM  wave-train

received at the two detectors is E±[t] = E0t ±
d

2 c
Sin[θ].  Consider the problem of how to determine θ.  If

we  “stored  the  voltages”  then  we  would  know  

E±[t]  and  this  becomes  a  standard  problem  in  signal

processing.  However we consider more complicated problems below.

Now  suppose  that  instead  of  having  the  EM  time  stream  one  instead  only  knows  the  “visibility”, i.e.

suppose  one  has  a  similarly  oriented  feeds  at  the  two  receivers  labelled  by  ±  as  well  as  an  imaginary

feed  in  the  middle  labelled  by  0  (we  consider  this  fictitious  feed  to  keep  the  formulae  nice  and

symmetric).  The feeds will register a time stream of voltages: V0[t], V±[t] which one can measure.  In the

idealized case of infinitely fine sampling and infinite duration of observation on can Fourier transform the

voltage time stream

V
˜
x[ω] = 1

2π
∫-∞
∞ ⅆ t ⅇ-ⅈ ω t VX [t]

where 

X = 0, ±.  Since 

VX [t]  is real then 

V
˜
X [-ω] = V

˜
X [ω]*.  If the voltages all come from the same source

position then

  

V
˜
±[ω] = V

˜
0[ω] ⅇ± 1

2
ⅈ ω Δt .

One then computes the visibility of the two actual feeds which for this infinite time sample is

  

C +-[ω] = V
˜
+ V
˜
-

*
= V

˜
0[ω]

2
ⅇⅈ ω Δt .

 Note that 

  

Δt =
ⅆ ArgC+- [ω]

ⅆω

so  that  a  continuous  noise  free  visibility  fully  determines Δt  and  hence θ  thereby  localizing  the  source

exactly.

Now consider the complication of finite bandwidth where we only compute C+-[ω] for some finite range of

ω.  We see from the previous formula that finite bandwidth, no matter how small, is not an impediment to

localization.

Henceforth let us specify the voltages generated by the source emission in terms of a stochastic function.

In  particular  assume  the  source  emits  zero  mean  Gaussian  random  noise  with  Gaussian  time  profile

centered on t = 0 i.e. 

   

〈V0[t]〉 = 0

〈V0[t]V0[t ']〉 = 2 π C

τ
ⅇ- 1

2
 t
τ

2
δ[t - t ']

.

 so that 

   

C 0[ω] = V
˜
0[ω]V

˜
0[ω

′]* = 1

2π ∫-∞
∞ ⅆ t ⅇ-ⅈ ω t

∫-∞
∞ ⅆ t ⅇ+ⅈ ω′ t′ 〈V0[t]V0[t ']〉

= C

π τ
∫-∞
∞ ⅆ t ⅇⅈ (ω′-ω ) t ⅇ- t

τ

2
= ⅇ- ω

′-ω
2 τ


2

τ

 so that

   

C0[ω] ≡ C 0[ω] = V
˜
0[ω]

2
 = C

 and .

   

C+-[ω] ≡ C +-[ω] = C ⅇⅈ ω Δt .

Next  consider  the  complication  of  discretization  of  the  visibility  from  a  stochastic  source.  In  particular

consider the average channel averaged visibility where we only know

Cα = ∫ωα-
1
2
δω

ωα+
1
2
δω ⅆω

δω
C+-[ω] = C ⅇⅈ ωα Δt j0

1

2
δωΔt

where 

j0[x] = Sin[x] / x and 

ωα+1 -ωα = δω.  In this simple case

Δt = Arg[Cα+1 ]-Arg[Cα+1 ]

δω

so  we  see  that  channelization  of  frequency  space  is  also  not  necessarily  an  impediment  to  localization.

A  problem  may  arise  because Δt  determined  by  the  previous  formulae  is  only  defined  mod

2 π /δω = 1 /δ ν.   This  sidelobe  ambiguity  in  

Δt
 corresponds  to  an  ambiguity  in  

Sin[θ]
 of  2 c

d δν
.   Since

Sin[θ] only varies between -1 and +1 this is not an ambiguity at all if 2 c

d δν
> 2  which requires the channel

width  to  be  small  enough:   

δν < c

d
= 299.792 kHz

1 km

d
.   Thus  requiring  completely  unambiguous

localization is a requirement on channel bandwidth.  

While  the  above  requirement  on  channelization  is  achievable  for  km  scale  baselines,  even  this

requirement is likely more stringent than is necessary.  If the two receivers have imaging optics such as a

dish  or  cylinder,  then  the  receivers  are  “focused”  on  a  limited  part  of  the  sky  which  we  call  the  “main

beam”.   The  sensitivity  of  the  receiver  to  sources  outside  the  main  beam  falls  off  rapidly  outside  of  a

region  of  angular  size Δθmain.  There  is  little  sidelobe  ambiguity  so  long  as  the  ambiguity  in θ  is  much

greater than 

Δθmain since sources this far away from beam center would need to be much brighter than a

source  within  the  main  beam  and  therefore  presumably  would  be  less  likely  to  occur.  Assuming

Δθmain ≪ 1
 the reduced requirement is that 2 c

d δν
≫Δθmain or

δν≪ 2 c

dΔθmain
= 3.43537MHz

10 km

d

1°

Δθmain
.

If we suppose that we are working at λ = 40 cm 749.481MHz then

δθ = λ

d
= 0.825059" λ

40. cm

100. km

d

and the channelization requirement is

  

δν≪ 2 cδθ

λΔθmain
= 0.416378 MHz

40. cm

λ

1°

Δθmain

δθ

1"
.

So  roughly  speaking  for 1"  resolution  with  little  sidelobe  ambiguity  one  would  need 100 km  baselines

and channel bandwidths no larger than 

100 kHz .

We have already shown the identity

   

Δt = Arg[Cα+1 ]-Arg[Cα]

δω
 

but a more useful one is probably

  

Sin[Δt δω] = Sin[Arg[Cα+1] -Arg[Cα]] =

Cα+1+Cα

2

*

Cα+1-Cα

2
-

Cα+1+Cα
2


*

Cα+1-Cα

2


Cα+1 Cα

since it is the ratio of two quadratic terms.  Noise, when added, will be easier to keep track for these 

quadratic terms.  In particular one can combine channels

Sin[Δt δω] =
∑α

Cα+1+Cα
2


*

Cα+1-Cα

2
-

Cα+1+Cα
2


*

Cα+1-Cα

2


∑αCα+1 Cα
.  


