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I found  

my Ph.D!

You need to automate that.

Outline 
• MicroBooNE and Deep Neural Networks 
• Deep Learning “lessons learned” 
• Deep Learning “lessons learning” 
• Summary



Three 2D Views

U

V

Y

Reconstructed 3D View

Reconstruction is a 
challenging task…

LArTPC: Particle Imaging Machine

WireCell 3D reconstruction

2400 wires, 3 mm wire pitch 
+60 degrees from vertical

3456 wires, 3 mm wire pitch 
along vertical

2400 wires, 3 mm wire pitch 
-60 degrees from vertical
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… so is analysis!

10.3 m

2.3 m

2.5 m



Solutions? 
• Path A: “traditional path” 

- Hand-engineered reconstruction algorithms 

• Path B: machine learning 
- “Deep Learning” 
‣In particular… 

Convolutional Neural Networks (CNNs) 
‣Scalable technique, generalizable to various tasks 
‣Superb performance on image data analysis 
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Data Reconstruction / Analysis Challenge



Deep Learning Techniques in UB
Boosted Decision Tree 
• Used for low energy (>40 MeV) single proton search 
• Input: reconstructed parameters (length, angle, etc…) 

• Analysis details available in UB public note page 

Machine Learning

BDT selected proton 
MicroBooNE 

Public Note 1025

Katherine Woodruff 
(NMSU)

Developed by
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http://www-microboone.fnal.gov/publications/publicnotes/MICROBOONE-NOTE-1025-PUB.pdf
http://www-microboone.fnal.gov/publications/publicnotes/MICROBOONE-NOTE-1025-PUB.pdf
http://www-microboone.fnal.gov/publications/publicnotes/MICROBOONE-NOTE-1025-PUB.pdf


Convolutional 
Neural Networks 

for 
LArTPC Analysis

NCπ0
CCQE

CC1π
DIS..!
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Outline 
• MicroBooNE and Deep Neural Networks 
• Deep Learning “lessons learned” 
• Deep Learning “lessons learning” 
• Summary



CNNs for Image Analysis

Image 
Classification
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Pixel Classification 
+ Clustering

Context Analysis

•Superb image analysis 
capabilities 

•Trainable from raw data 
(large tensor)

Classification Object Detection 



Pixel Labeling 
+ 

Particle ID

Muon

Proton

•Event selection (image classification) 
•Vertex finding (object detection) 
•Clustering (semantic segmentation) 
•Particle identification (image classification)

Is neutrino here?
Detect interaction 
and classify type

νµ + n ➞ µ + p
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CNN for Event Reconstruction
CNN-based reconstruction tools in MicroBooNE



CNN in UB: Image Classification (I)
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π- p

µ-γe-

Particle identification 
Trained a network to distinguish 5 particle types

•Simulated particles 
- using 1 (collection) plane 

•Supervised training 
- 22,000 images / type 

•Flat momentum dist. 
- Uniform position 
- Isotropic [100, 1000] MeV/c
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Particle identification 
Trained a network to distinguish 5 particle types

Resource Usage 
Architecture study include performance vs. speed! 

Current architecture choice ~7 ms/image @ Titan X GPU)

Particle Correct 
Fraction

Typical 
Mis-ID

e- 0.778 γ … 0.20

γ 0.834 e- … 0.15

µ- 0.897 π- … 0.054

π- 0.710 µ- … 0.226

proton 0.912 µ- … 0.046

Further improvement?
• ~5 to 10% improvement by 
exploring network architectures 
- network width, effective depth 

• more improvement by combining 
3 plane information

JINST 10.1088/1748-9221

CNN in UB: Image Classification (I)

http://iopscience.iop.org/1748-0221/12/03/P03011/


CNN in UB: Image Classification (II)
Neutrino event selection 
Distinguish neutrino+cosmic vs. cosmic-only events 

• Training sample uses simulated neutrino + cosmic data image
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Neutrino event selection 
Distinguish neutrino+cosmic vs. cosmic-only events 

• Training sample uses simulated neutrino + cosmic data image

CNN in UB: Image Classification (II)
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Siamese Architecture 
for 3 plane analysis 

 Take aways 
• Successfully combined 3 planes 
• Poorer performance on real data 

- Tested with CC-inclusive selection sample 
from traditional reco 

- Importance to test/study with real data

Neutrino event selection 
Distinguish neutrino+cosmic vs. cosmic-only events 

• Training sample uses simulated neutrino + cosmic data image

JINST 10.1088/1748-9221

CNN in UB: Image Classification (II)
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http://iopscience.iop.org/1748-0221/12/03/P03011/
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The box is a “label” 
(“region detection”)

Event vertex detection 
Trained a network to find neutrino interaction region 

• Training sample uses simulated neutrino + cosmic data image 
- Supervised training using ≃100,000 collection plane images (1-plane)

CNN in UB: Object Detection
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Yellow: “correct” 
bounding box 
Red: by the network

Network Output 
≃ 2.6m (width) x 1 m (height) MicroBooNE 

Simulation + Data Overlay

νµ

JINST 10.1088/1748-9221

Event vertex detection 
Trained a network to find neutrino interaction region 

• Training sample uses simulated neutrino + cosmic data image 
- Supervised training using ≃100,000 collection plane images (1-plane)

CNN in UB: Object Detection

Beam

http://iopscience.iop.org/1748-0221/12/03/P03011/
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JINST 10.1088/1748-9221

Event vertex detection 
Trained a network to find neutrino interaction region 

• Training sample uses simulated neutrino + cosmic data image 
- Supervised training using ≃100,000 collection plane images (1-plane)

CNN in UB: Object Detection

Beam

http://iopscience.iop.org/1748-0221/12/03/P03011/


17

Particle clustering using a network 
CNN designed to segment pixels by predefined semantics 

• Current semantics: [background, shower, track] 
• Supervised training on purely simulated images 

- Custom training technique to improve performance 
- On-going work: particle-wise pixel clustering

νe
proton

e-

ADC Image Label Image

MicroBooNE 
Simulation 
Preliminary

CNN in UB: Semantic Segmentation
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νe
proton

e-

ADC Image Error Weight Image

CNN in UB: Semantic Segmentation
Particle clustering using a network 
CNN designed to segment pixels by predefined semantics 

• Current semantics: [background, shower, track] 
• Supervised training on purely simulated images 

- Custom training technique to improve performance 
- On-going work: particle-wise pixel clustering
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νe
proton

e-

ADC Image Network Output

CNN in UB: Semantic Segmentation
Particle clustering using a network 
CNN designed to segment pixels by predefined semantics 

• Current semantics: [background, shower, track] 
• Supervised training on purely simulated images 

- Custom training technique to improve performance 
- On-going work: particle-wise pixel clustering



νµ

γ
γ µ

cosmic

cosmic

cosmic
p

BNB Data : Run 5419  Event 6573  March 14th, 2016

30 cm

30
 cm
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Real Data ADC Image

CNN in UB: Semantic Segmentation

Collection Plane View

Be
am



BNB Data : Run 5419  Event 6573  March 14th, 2016

30 cm

30
 cm
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Network Output

CNN in UB: Semantic Segmentation

Collection Plane View

Be
am
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End-to-End Reconstruction Training
Optimize multiple tasks together 
“Multi-task Network Cascade” can introduce task dependencies 

• Allows to optimize the whole chain together

… sorry for my parenthood …



•Event selection (image classification) 
•Vertex finding (object detection) 
•Clustering (semantic segmentation) 
•Particle identification (image classification)
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Some studies published!

MicroBooNE’s 1st paper 
JINST 10.1088/1748-9221 

 arXiv 1611.05531 

Feel free  
to contact us 
for details!

CNN in MicroBooNE

https://arxiv.org/abs/1611.05531
http://iopscience.iop.org/1748-0221/12/03/P03011/
http://iopscience.iop.org/1748-0221/12/03/P03011/
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DL Interface Software 
Generic image processing software (no need to be LArTPC) 

• Written in C++, extensive Python support 
• Interface to C++/Python DL softwares (caffe, TensorFlow, etc.) 

- Fast, threaded IO to maximally utilize GPUs 
- Can bridge LArSoft (or any std::vector<float>) and DL software w/o 

file format conversion for running inference.

Hardware resource! 
PIs responded our voice to expand GPU resource for R&D 

• MIT, Columbia, Yale, UM Ann Arbor, PNNL 
• Want more! (and more!) (and more!)

CNN in MicroBooNE

24



Lessons Learned

• CNNs are promising techniques for LArTPC 
-  Low information density: custom techniques can be helpful

• Initial challenges = software & hardware (GPU) 
-  Happy to advise on your GPU needs ($4k~) 
-  Happy to share our software (public github) 
-  Planning software workshops (please request!)

• CNNs can perform reconstruction tasks 
-  Classification, object detection, and pixel clustering

• Important to analyze response on real data 
-  Topological feature learning seems more immune 
-  Building labeled image database from our data 
-  Explore weak-supervision training & adversarial network

25



find 
nu’s!

… these images 
are almost empty…

Lessons We’re Learning 
DeepLarning Projects 

for 
LArTPC Analysis
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ν Reconstruction 

νe reconstruction (courtesy of Adrien Hourlier @ IPA)

Taritree W. 
MIT

Jarret M. 
MIT

Lauren Y. 
MIT

Rui A. 
IIT

Victor G. 
Columbia U.

Christopher B. 
U. Michigan

27

Adrien H. 
MIT

Beam

Jessica E. 
Syracuse U.



DUNE Simulation 
BLV Talk by Jeremy Hewes

n-n Oscillation

• New physics! 
• Signal vs. background (atm. ν’s) 
•  Developed from UB for DUNE 
• Rich event topology, suited for 
CNN pattern recognition power

Jeremy Hewes 
U. Manchester

Georgia Karagiorgi 
Columbia U.
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DUNE Simulation 
BLV Talk by Jeremy Hewes

https://indico.fnal.gov/getFile.py/access?contribId=4&resId=0&materialId=slides&confId=14492
https://indico.fnal.gov/getFile.py/access?contribId=4&resId=0&materialId=slides&confId=14492


Proton Decay

Elena Gramellini 
Yale U.

Kevin Wierman 
PNNL

Eric Church 
PNNL

electron

π0

PDK background study in UB 
(Elena G. @ TAUP 2015)

Example Kaon decay channel 
(Kevin W./Eric C. @ PNNL)

• New physics! 
• Starting from UB work, 
real application @ DUNE 

• Current focus on K+/π+ 
decay channel (PNNL) 

• Topology classification

29



PID for Neutrino Analysis

1 e- & 1 proton 1 µ- & 1 proton

Summer Student 
A

Summer Student 
B

• Predict multiplicity and types of particles involved 
• Train on randomly generated multi-particle images 

-  Avoid using an event generator with a certain model
30

Beam Beam



3D Point Prediction

2D Views

U

V

Y

WireCell

Network

• Predict 3D point with charge from 2D plane views 
• 3D feature recognition (3D point clustering + PID)

Reconstructed 
3D View

More Summer 2017 Projects!

31

Network

Muon

Gamma

3D Clustering 
+ PID



Lessons Learning

• Fully CNN-based reconstruction  
-  similar to staged LArSoft reconstruction steps 
-  allows stage-by-stage comparison 
-  WireCell-like 3D reconstruction + analysis path 

• Applying CNNs for physics analysis 
-  neutrino analysis 
-  rare event search: nn-bar oscillation, proton decay

32



… wrapping up …

33

Outline 
• MicroBooNE and Deep Neural Networks 
• Deep Learning “lessons learned” 
• Deep Learning “lessons learning” 
• Summary



Take Away Messages

3. MicroBooNE applies CNN techniques to physics analysis

5. MicroBooNE shares tools developed and knowledge learnt
34

We Can 
Find Nu’s!

Thank you! 
for your attention :)

1. LArTPCs need advanced pattern recognition algorithms

2. MicroBooNE develops CNN-based reconstruction tools

4. MicroBooNE studies network response on real data 

I want Ph.D! 
I want a job!



“… the cleverer AI decided it was better to be aggressive in all situations.”

Remember what happen“ed” with AI

We try to be careful :)

Extracurricular Lessons Learned

35



Back up

36



More Projects?

37
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“encoder” for human eye illustration  
by Apple research team 

arXiv:1612.07828

Training on Data

• Labeled image database 
- Labeling software tools 
- “Chimera” image maker  

• Weakly supervised training Proton Michel

Data/Sim. Discrepancy

• Train discriminator, study the cause 
• Generative Adversarial Network 

- Refine MC image to look like data 
- Train analysis CNN on refined sim.

More Summer 2017 Projects!

https://arxiv.org/pdf/1612.07828.pdf
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νe
proton

e-
     

Hey! 
I found  

my Ph.D!

You need to automate that.

Outline 
• Intro: what is deep learning? 
• Event reconstruction + analysis challenges 
• Deep neural network applications 
• Summary



100 cm

10
0

 c
m

Cosmic Data : Run 6280  Event 6812  May 12th, 2016

Challenges for Neutrino Analysis (I)

Challenge 1: our detector is filled with cosmics 
and neutrino is rare

Collection Plane

Ti
m

e

Wire

40



Challenges for Neutrino Analysis (I)
100 cm

10
0

 c
m

Cosmic Data : Run 6280  Event 6812  May 12th, 2016

Challenge 1: our detector is filled with cosmics 
and neutrino is rare … and signal is small

Collection Plane

Proton 
(K.E. 123 MeV)

Electron 
(K.E. 320 MeV)

νe

Ti
m

e

Wire

41



55 cm
Run 3469 Event 53223, October 21st, 2015 

νµ

p

µ

π?

Cosmics

Cosmics

Cosmics

42

Challenge 2: identifying particles 
Necessary for analyzing neutrino + nuclear interactions

Challenges for Neutrino Analysis (II)
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Challenge 3: Clustering 
Reconstruction is already hard, and one 
must cluster all scattered charges 

Challenges for Neutrino Analysis (III)



Our data is an “image”, 
a matrix of numbers

Not how it looks in C++
01101010100101011010101001011010
10111010101001010100010010101101
0101001011010101001010110101010
01011010101001010110101010101101
0101001010110101010010110101010
01011010101001010110101010010110
10101001010110101010101101010100
10101101010100110101101010100101

This is how it looks in C++

we wish

in reality

Challenge 4: programming is not easy 
Need efficient, fast pattern recognition algorithms and a 
framework to run a chain (or multiple chains) of them

44

Challenges for Neutrino Analysis (IV)



Solutions? 
• Path A: “traditional path” 

- Hand-engineered reconstruction algorithms 

• Path B: machine learning 
- “Deep Learning” 
‣In particular… 

Convolutional Neural Networks (CNNs) 
‣Scalable technique, generalizable to various tasks 
‣Superb performance on image data analysis 

45

… enough challenges …



CNN for LArTPC 
Image Analysis

46

… these images 
are almost empty…



⟶

x0 
 

Background: Neural Net

The basic unit of a neural net 
is the perceptron (loosely 
based on a real neuron) 

Takes in a vector of inputs (x). 
Commonly inputs are summed 
with weights (w) and offset (b) 

then run through activation.

47

x

⋮

[ 

[ 

x1 
 

xn 
 

∑

w0

w1

wn

⋮
+ b

Input Neuron 
Sum

Activation 
Output

σ( x )➞

Introduction to CNNs (II)
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By picking a value for w and b,  
we define a boundary  

between the two sets of data

Perceptron 2D Classification

from wikipedia

[ x0 
 

x1 
 

∑0

Output

[ 

cat 
dog

Imagine using two features to separate cats and dogs

∑0

Introduction to CNNs (II)

0

https://en.wikipedia.org/wiki/Perceptron
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Maybe we need to do better: assume new data point  
(My friend’s dog — small but not as well behaved) 

(Thor)

We can add another perceptron 
to help classify better

Perceptron 2D Classification

x0 
 

x1 
 

from wikipedia

∑0

∑1

∑0
∑1

Introduction to CNNs (II)

0

https://en.wikipedia.org/wiki/Perceptron


[ 
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(Thor)

Perceptron 2D Classification

x0 
 

x1 
 

Output

[ 

cat 
dog∑1

∑0

∑0

∑1

∑2

∑2

Another layer can classify based on  
preceding feature layer output

Maybe we need to do better: assume new data point  
(My friend’s dog — small but not as well behaved) 

Introduction to CNNs (II)



Fully-Connected Multi-Layer Perceptrons

A traditional neural network consists of a stack of layers of such 
neurons where each neuron is fully connected to other neurons of 
the neighbor layers

51

Introduction to CNNs (III)
“Traditional neural net” in HEP



Problem: scalability

Feed in entire image

Use pre-determined features

Problem: generalization

Cat?

Cat?
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Introduction to CNNs (III)
“Traditional neural net” in HEP

Problems with it…



CNN introduce a limitation by forcing the network to 
look at only local, translation invariant features

input feature map
hidden  
layers

~x

input  
layer,   

output  
layer,   ~y

(a) Feed-forward neural network (b) Feed-forward neural network

neuron Activation of a neuron depends 
on the element-wise product of 
3D weight tensor with 3D input 

data and a bias term

53

• Translate over 2D space to process the whole input 
• Neuron learns translation-invariant features 
• Applicable for a “homogeneous” detector like LArTPC

Introduction to CNNs (III)

Want more details?  
Feel free to ask me later!



Track/Shower 
Pixel Labeling 

~ How Does SSNet Work? ~

54

NCπ0
CCQE

CC1π
DIS..!



CNN is a neural network formed with multiple 
convolution layers of neurons

55

Quick Recap on CNN

Activation of a neuron depends 
on the element-wise product of 
3D weight tensor with 3D input 

data and a bias terminput feature map
hidden  
layers

~x

input  
layer,   

output  
layer,   ~y

(a) Feed-forward neural network (b) Feed-forward neural network
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Introduction to CNNs
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12

Introduction to CNNs

1
2
0
-1 0 1
3
1

0
-1 -1
-1
0

-20

-3

1
1
0
-1 -1 -1
1
1

1
1 -1
-1
1

20

0

0
1
0
-1 1 -2
1
-1

0
0 1
-1
1

-20

-3

Filter

Image

Feature Map

Genty DL µB NP

1 0 2 .  .  .

.  .  ..  .  .

weights

Each filter (neuron) translates over 
2D space to process the whole input, 

producing a “feature map”.

neuron



• Goal: provide a single label for the whole image 
• How: transform the higher spatial resolution input (i.e. image) into 

a vector of image features, ultimately a 1D array of feature 
parameters useful for the whole image labeling, by a successful 
chain of convolutional and pooling operations.
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In
pu

t I
m

ag
e

1st layer output 
feature map

Classes

Down-sampled 
Feature Maps

CNN for image classification

Quick Recap on CNN

2nd layer output 
feature map

3rd layer output 
feature map



Quick Recap on CNN
Feature map visualization example 

• https://www.youtube.com/watch?v=AgkfIQ4IGaM

Neuron concerning face Neuron loving texts
57

https://www.youtube.com/watch?v=AgkfIQ4IGaM


Semantic Segmentation Network
How is it different from Image Classification?
Example CNN for Image Classification

Example CNN for Semantic Segmentation

In
pu

t I
m

ag
e

Feature map preserves 
spatial information

Classes

In
pu

t I
m

ag
e

O
ut

pu
t I

m
ag

e

Down-sampled 
Feature Maps

Up-sampled 
Feature Maps

feature
tensor

• Classification network reduces 
the whole image into final 
“class” 1D aray

• SSNet, after extracting class 
feature tensor, interpolates 
back into original image size

Down-sampled 
Feature Maps

Feature tensor is interpolated back into original image 
by up-sampling and interpolation operations58
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Semantic Segmentation Network
How to train SSNet?
Supervised training, like image classification 
But the labels (and errors) are pixel-wise 



Semantic Segmentation Network

60



SSNet UB Analysis

U-Net + ResNet module design 
• Developed for bio-medical research 

- … to mask pixels of living cells (for automatized image analysis) 
- Designed for better spatial accuracy to get cells’ boundary correct 

• Use ResNet architecture for convolution layers
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Spatial 
Downsampling

Interpolation 
Up-sampling

Biocell 
“Raw” Image

Biocell 
Segmented

“U” shape if formed 
by concatenating 

feature maps
Segmented pixels of 
living cells (yellow 

boarder is truth label) 
arXiv:1505.04597

https://arxiv.org/pdf/1505.04597.pdf


Training SSNet

62

Input Image “Label” Image 
(for training)

“Weight” Image 
(for training)“Pixel Weight” for training 

• Assign pixel-wise “weight” to 
penalize mistakes 

• Weights inversely proportional to 
each type of pixel count 

• Useful for LArTPC images ( low 
information density)
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MicroBooNE 
LArTPC Detector 

Quick Guide

55 cm
Run 3469 Event 53223, October 21st, 2015 



TPC Working Principle (I)

Cathode @ 70 kV 
(plate)

Anode 
(wire plane)

Electric Field 
~270 V/cm

X = 2.5 m

Y
 = 2.3 m

Z = 10
.4 

m

1. Charged particles interact in Ar 
• Ionize argon 
• Produce scintillation light 

2. Ionization e- drift toward anode 
3. Wire planes detect drift e-

64

ν



Anode 
(wire plane)

X = 2.5 m

Y
 = 2.3 m

Z = 10
.4 

m

1. Charged particles interact in Ar 
• Ionize argon 
• Produce scintillation light 

2. Ionization e- drift toward anode 
3. Wire planes detect drift e-

Scintillation Light

Electrons

Scintillation Light 
detected by PMTs

Cathode @ 70 kV 
(plate)

Electric Field 
~270 V/cm

65

TPC Working Principle (II)



Scintillation Light 
detected by PMTs

Anode 
(wire plane)

X = 2.5 m

Y
 = 2.3 m

Z = 10
.4 

m

1. Charged particles interact in Ar 
• Ionize argon 
• Produce scintillation light 

2. Ionization e- drift toward anode 
3. Wire planes detect drift e-

Charge collected 
by wire plane

Drift Time = X position

Cathode @ 70 kV 
(plate)

Electric Field 
~270 V/cm
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TPC Working Principle (IV)

Three 
Wire Planes



MicroBooNE TPC & Cryostat

Anode Wire Plane Cathode Plate
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MicroBooNE TPC & Cryostat

Anode Wire Plane Cathode Plate

68
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MicroBooNE TPC & Cryostat



What’s Deep Learning?

70



Deep Learning … What & Why

Hey, lessons learned!

What is Deep Learning? 
• A buzz word to gain attention from job recruiters

71



What is Deep Learning? 
• A buzz word to gain attention from job recruiters 
• Collective term for neural network (NN) architectures 

-  Consists of large number of layers (deep) 
-  Breakthrough in computer vision (2012), now AI and more… 

• It is a non-linear functional approximation 
-  NN with millions of parameters to map input to output space

Deep Learning … What & Why

72

Not in the talk: 
What’s different from “traditional” NN? 

How is it better? 
(Feel free to ask later or during questions)



What is Deep Learning? 
• A buzz word to gain attention from job recruiters 
• Collective term for neural network (NN) architectures 

-  Consists of large number of layers (deep) 
-  Breakthrough in computer vision (2012), now AI and more… 

• It is a non-linear functional approximation 
-  NN with millions of parameters to map input to output space

Deep Learning … What & Why

Why Deep Learning? 
• LArTPC image data analysis = feature recognition 
• Explore the technique for reconstruction/analysis 

- 1st MicroBooNE collaboration paper on CNN
73

http://iopscience.iop.org/article/10.1088/1748-0221/12/03/P03011/meta

