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iquid Argon In A Testbeam
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15th May 17
iquid Argon In A Testbeam
Third run is ongoing.

200-1400 MeV/c charged particle beam momentum range:
O Pions
O Muons
O Electrons
O Kaons
O Protons/Antiprotons
O Deuterons




Testbeam detectors
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with 1 ns sampling provides TOF. Not very fast:
impossible distinguish between light particles (e/ ¢ /).

Work done on
and
the two scintillators
allowed us to improve the TOF
resolution to less than one ns.

The development of a new pulse
fitting algorithm is currently
underway, to bring our resolution
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MWPCs + bending magnets allow to
reconstruct particles momentum
before entering the LArTPC.

Tertiary Beam Particles Momentum
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WC pairs used to define particle LATIAT
tracks before and after the magnets.
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Looking beamline from
the top.

[ Ba
P sin(6,)—sin(6))

Bm = +82deg
midplane

When there are hits in all 4 WC

By extrapolating the
completed leg to its
intersection with plane
centered between the
magnets ( ), the
fourth point to be used
with the incomplete leg
can be calculated.

midplane

When WC 2 (or WC3) missing

Credit: (G. Pulliam, Syracuse U)



Skip 2 vs Four Point Momentum
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To compute the
infroduced error, @
comparison between
momentum calculated
with all 4 WCs data and
momentum obtained
blinding WC2 (WC3) is
performed.

Fit parameters provide a
correction scaling o
three point frack to @
four point frack.

Sigma from fit provides
unceriainty of
momentum of three
point tfrack relative to a
four point track.
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MWPCs + TOF make possible a particle selection.

TOF vs ReconstructedMomentum
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MWPCs + TOF make possible a particle selection.

p (ToFxc)2_1
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MWPCs + TOF make possible a particle selection.

The mass of the particles can be also retrieved.

The capability of knowing the particle species allows the ability to
evaluate both particle reconstruction and particle ID algorithms (work
in progress... more in the following slides).
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Photoelectrons per cm

Aerogel threshold Cherenkov detector in the
LArAT beam line is to separate
iN a momentum range, where muons emit
Cherenkov radiation while pions do nof.
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For momenta below 300 MeV/c,

aerogel (n =1.057) can also be used
fo one of # of events 1034

largest backgrounds in pion cross

section analysis. AG electron 767
event

Study on small sample: EM shower event 589

of the EM -Shower electron

candidates below 300 MeV/c are Matched 572

identified by the aerogel counters. AG&EM shower
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From testbeam to TPC




TPC Front Face
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LArIAT Data

LArIAT Data

Both beamline particle frajectory, as determined be the last two
MWPCs, and the reconstructed TPC tracks are projected to the TPC

front plane.

Matching based on

) and
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LArIAT Preliminary
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Using @
mis-matches between data and MC:
O e.g. mis-match with the track pitch

Tracks Pitch
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can lead to unexpected

Using a simple
beamline MC (flaft
momentum spectrum
and Gaussian
distributed spread in
the angles) lead to @
disagreement between
MC reconstructed track
pitch and data
reconstructed frack
pitch.

O e.g. Using LArSoft Single
Particle Gun generator
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Using a non-realistic beam MC simulation can lead to unexpected
mis-matches between data and MC:

O Fixed when generating MC using the data derived beam momentum and
angles (and their correlation)

Tracks Pitch
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Credit: (E. Gramellini, Yale)

MC with realistic
momentum and angle
spectrum.

Momentum, angle and
position derived from
data and generated
with the hit-or-miss
method.
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The momentum of the incoming particle is calculated using the hits
from the WCs. However, there is material between WC4 and the TPC
which causes the particle to lose energy before entering the TPC
(scintillator, steel, argon, G10, etc...).

Beam Halo Sc'gtillator

E

LOSS
Wire Chamber # 4

Energy Loss in the Upstream
(Beamline Detectors, Cryostat Steel, Argon)

E.oss has a positional dependence that has to be taken info account.
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Proton are being used to calibrate this positional dependence: if a
proton stop inside the TPC without intferacting, there is the measure of
the energy the proton had.

Proton, with initial momentum and angular dependence from data,
are generated. Study is ongoing.

E,ps(X,Y,0,0)= \/Pz +m,2, =ty = Eppe
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In LArAT, a problem is the TPC sees stray halo muons produced
upstream (at the first secondary Cu target) which hugely limits the
beam intensities.

If we could have changed the arrangement of our tertiary beamline
to minimize these secondary particles from appearing in the same spill
as real beamline events, it would have improved LArAT performance.

Ideal TPC Placement

—_—
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Secondary N\ Halo muons
beam —

Bending
magnets
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Design the beam line to avoid (as much as possible) the particle halo
coming from the target.

Position and momentum measurement as close as possible to the TPC
begin.

Less material than possible between the momentum measurement
device and the begin of the TPC.

Very realistic simulation of this material.

It is fundamental to have a MC that realistically mimic the angle and
momentum spectrum of the real beam.

22
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Cosmic Rays Paddles trigger cosmic muons (mip) that cross the entire drift
field.

They are used to determine the electron lifetime (i.e. O2-equivalent
contamination), fitting the exponential decay trends of the amount of
charge collected at the wire planes as a function of the drift fime.

Cosmic Ray Paddles

Electron lifetime achieved without LAr recirculation
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Particle ID
O LArAT is a perfect place where test particle ID algorithm in LAr.

2 In the evaluation of ID algorithm MC True information can be
substituted with beamline derived information.

o Beamline derived information have an error, but the events are redl,
i.e. take into account all possible effects and topologies.

25
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At the moment, in LArSoft, are implemented some ID algorithm based
on calorimetry, and in particular on the fit of
that should distinguish between different particles.

4

They basically look for the Bragg peak at the end of a stopping track
to determine the particle species. But ...

Bragg peak /ﬁ‘ End End2
o VtV
Vix VtX1 g ~ Interaction
1
Z (beam direction) Z (beam direction)
No interaction: 1 Reco Track. Interaction: 2 Reco Tracks.
Bragg peak at the end of the track. Bragg peak at a different track
End
TPC /
boundaries \
Vix ~_  End of the track in TPC

Z (beam direction)

Bonus case: escaping particle

Credit: (E. Gramellini, Yale) 2%



LArIAT Data Preliminary K* Candidate
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LArIAT Data Preliminary Reconstruction

Beam Direction
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If these algorothms are used without taking into account topologies

results can be disasfrous.
Credit: (E. Gramellini, Yale)
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Particle IDenfification Algorithm ( ) is a LArTPC based technique
developed by ArgoNeuTl.

It parameterizes the BetheBlock energy deposition curve for
in terms of the residual range R and a parameter A, unique

for each particle (the PIDA parameter).

For each given track, A is calculated by averaging the value of dE/dx
and R for each reconstructed point i of the track.

dE_ oo s
© B Proton
dx § 0.25;
N .2:—
1 dE 042 ToE
A = _E R 0.1
N dx calo,i 0-052— l

o 2 4 6 8 10 12 14 16 18 20
PIDA (MeV/cm'#?)

R. Acciarri et al. (ArgoNeuT Collaboration), JINST 8 (2013) PO8005 -
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PIDA as ID method works only for stopping particles.

PIDA vs mass
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PIDA as ID method works only for stopping particles.

15th May 17

Can be used to tag interacting/decaying/escaping particles!

PIDA vs mass
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It’s very important to test ID algorithm on real data to take
INfo account all possible effects.

Knowing the cross section permits to compute how often
the different topologies will appear.

Good job, LArIAT ...
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Four layers of XY planes sandwiched between (pink) steel slabs.
Each plane is composed by 4 scintillating bars connected to a PMT.

Allows to discriminate m/u exiting the cryostat.
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