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Outline

● Characteristics of electromagnetic energy deposition in LAr.

● How reconstruction of low-energy EM activity impacts DUNE & SBN programs.

● Reconstructing Michel electrons in MicroBooNE: results and “lessons learned”.

● Brief note on muon momentum determination via multiple Coulomb scattering.

David Caratelli @ Columbia University
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MicroBooNE by the numbers.
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David Caratelli @ Columbia University

Single-phase TPC:
90 Ton active volume, on BNB @ FNAL.

Triggered readout:
4.8 ms RO window [two drift-windows]. 

Drift field:
273 V/cm → 0.11 cm / μs drift velocity.

Surface detector:
5 kHz cosmic rate → ~20 cosmic muons / event.

 E field
 273 V/cm
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EM activity in LAr : a summary
David Caratelli @ Columbia University

Two things to note:

1) Energy loss process depends significantly on energy. At lower energies (<100 MeV) significant contribution from primary 
ionization. Electron/photon not very “shower-like”.

2) Radiative photons travel tens of cm before depositing their energy in TPC.

~20 cm absorption length
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EM activity in LAr : a summary

1) EM shower topology depends significantly on energy

Michel electrons [0­55 MeV] Beam π0[tens­hundreds MeV] cosmic EM activity

David Caratelli @ Columbia University
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EM activity in LAr : a summary

2) Radiative photons travel tens of cm before depositing their energy in TPC.

David Caratelli @ Columbia University

~ 1.5 meters

~30 centimeters
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“Michel Electron Reconstruction Using Cosmic-Ray Data from the MicroBooNE LArTPC” 

arXiv:1704.02927

https://arxiv.org/abs/1704.02927
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How does low-energy EM activity impact DUNE / SBN ?

1) π0 background rejection at all ν energies.

2) precise ν energy reconstruction depends on well-reconstructed  
    lepton kinematics.

3) DUNE's 2nd oscillation peak → O(100) MeV lepton energy.

4) Impact on supernova physics.

Impact on DUNE/SBN Physics Programs
David Caratelli @ Columbia University

SNB νs @ DUNE 
[arXiv:1512.06148]

SNB νs @ DUNE 
[arXiv:1512.06148]

[arXiv:1512.06148]
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Michel Electrons

Michel electrons produced by decay-at-rest muons.  

Take advantage of large cosmic flux : beam-external events used 
for this analysis.

Powerful tool to study energy response  < 60 MeV.

At energies < 100 MeV challenges in e+/- reconstruction due to 
topological features.

Michel energy spectrum 
measured w/ Nevis synchrotron

e-ν
eμ- ν

μ

David Caratelli @ Columbia University
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What do Michel electrons look like?
David Caratelli @ Columbia University
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Michel electrons : impact of radiative energy loss

Similar contributions to energy loss from 
bremsstrahlung photons and ionization.

→ Complex topology.

Stochastic nature of bremsstrahlung photon 
production:

→ “Ionization-only” energy not sufficient 
    for good energy resolution.  

Stochastic nature of 
brem. Production 
causes spread.

David Caratelli @ Columbia University
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Michel electrons : impact of radiative energy loss

Missing energy from radiative photons has a significant 
impact on the Michel energy spectrum.

David Caratelli @ Columbia University
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Michel electrons : what do they look like in MicroBooNE?

Characteristic topology:

● Bragg peak.

● Outgoing Michel electron at an angle 
with incoming muon. 

Rely on calorimetric + spatial info. to 
identify & reconstruct.

David Caratelli @ Columbia University
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Michel electrons : reconstruction

2D “collection-plane” reconstruction technique:

1) Signal processing and 2D “hit” reconstruction to 
identify energy deposition points on the collection-plane.

2) generic pattern-recognition clustering to group 
together hits from each cosmic interaction.

3) Tailored set of algorithms to identify Michel topology 
and obtain pure sample.

David Caratelli @ Columbia University
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Calorimetric Energy Reconstruction
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Argon is ionized
Wion = 23.6 eV

Ion Recombination
Impurities absorb 
drifting electrons

1) Integrate charge associated to tagged Michel electron hits.

2) Account for processes affecting energy loss and signal formation in MicroBooNE's TPC:

40% attenuation Negligible @ uBooNE

David Caratelli @ Columbia University
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Michel electrons : Energy Reconstruction

Muon Bragg peak can contaminate 
clustered Michel energy

Exclusion of radiative photons 
causes shift in spectrum.

David Caratelli @ Columbia University
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Michel electrons : tagging radiative photons

To recover radiative photons need to extend the search 
for charge tens of cm away from muon stopping point.

This presents challenges, especially for a surface 
detector with “dense” accidental cosmic activity. 

Cuts used: 80 cm & 25 degrees in 2D.

David Caratelli @ Columbia University
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Michel electrons : Energy Reconstruction

Where is the remaining charge?
- inefficiency in clustering.
- charge under hit-threshold.

photon tagging cut:
80 cm & 25 degrees

a

ionization only

David Caratelli @ Columbia University
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Michel electrons : MC resolution study

Tagging radiative photons reduces energy bias and 
improves energy resolution.

Energy Definition Energy Bias Energy Resolution

Ionization only ­40% > 30%

 + tagged photons ­25% 20%

David Caratelli @ Columbia University
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MicroBooNE : moving forward
David Caratelli @ Columbia University

Ongoing efforts:

1) Effective signal-processing and hit-reconstruction to 
keep detection thresholds low.

2) Careful detector calibration to account for non-
uniformities in calorimetry.

3) Use of more sophisticated 3D reconstruction 
techniques: CNNs / Wire-Cell / Pandora.

All play a role in improving our performance moving 
forward.
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Lessons Learned

Stochastic nature of Brem. Production means tagging radiative photons is essential to obtain good energy 
resolution. 

Complicated due to: a) large absorption length. b) low-energy photons.

No “one-solution-fits-all” reconstruction approach for EM activity at different energies.

How can a light collection system complement energy reconstruction for low-energy electrons?

David Caratelli @ Columbia University
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There is always more to learn...

EM showers from π0s:

Higher energy range [few hundred MeV]

Many of the same challenges remain:

– Sparse energy deposition.

– Track-like ionization deposition.

 Watch for future results from MicroBooNE
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“Determination of muon momentum in the MicroBooNE LArTPC

using an improved model of multiple Coulomb scattering”

arXiv:1703.06187
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https://arxiv.org/abs/1703.06187
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Multiple Coulomb Scattering: what and why?

Charged particles traversing a medium scatter. Angular deflection correlated with momentum.

Method allows momentum reconstruction when track not fully contained in detector volume. 
- [50% BNB νμ CC muons not contained]

David Caratelli @ Columbia University

Scattering angle distribution described by 
Highland formula:

MicroBooNE approach to MCS momentum 
determination:

● Account for detector angular resolution.

● Study and account for S2 momentum-
dependence in Ar.

● Maximum-likelihood p determination.
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Multiple Coulomb Scattering: results

Paper performs several studies:

● Comparison of MCS vs. range-based momentum estimation on contained muons from BNB νμ CC interactions.

● Simulation studies of momentum determination bias and resolution for contained / exiting muon tracks.

David Caratelli @ Columbia University

Multiple Coulomb Scattering momentum-estimation is an important technique which will allow MicroBooNE 
 to extend its physics reach in studying neutrino interactions at O(1 GeV) neutrino energies.
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Thank you

LBNF @ SD

Upstream  

CERN @ CH

Downstream
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Backup
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Motivation for EM activity response studies

Precise energy reconstruction is essential for near and long-term precision neutrino oscillation 
experiments.

Electron/photon energy reconstruction key to a variety of measurements:

Limited experimental validation to-date of LArTPC's calorimetric energy reconstruction of EM showers.

Experiment Measurement e+/- energy resolution Relevant energy Range

DUNE CP-violation / mass-
hierarchy

2% ⊕ 15% / ( E [GeV] ½ ) [1] 100 MeV – 10 GeV

SBN non-standard oscillations 15% / ( E [GeV] ½ ) [2] 0.1 – 1 GeV

MicroBooNE MiniBooNE Low Energy 
Excess

15% / ( E [GeV] ½ ) [2] 100-400 MeV

[1]: DUNE CDR: physics arXiv:1512.06148. [2]: SBN Proposal arXiv:1503.01520v1.

David Caratelli @ Columbia University
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LArTPC Working Principle : MicroBooNE

ν

8” PMTs

isotropic UV 
scintillation light. 

Looking inside cryostat, before TPC inserted

David Caratelli @ Columbia University
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MicroBooNE Readout Electronics “timeline”

ArXiv:1308.3446v1 – D. Kaleko @ Columbia
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LArTPC Working Principle : MicroBooNE
David Caratelli @ Columbia University

Electronics in cold:
High signal-to-noise enables 

accurate calorimetry.
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Recombination

Birks model

Box model

Recombination depends on density of Ar+ and e-.

Affected by:

– dE/dx (more energy deposition per unit distance → 
larger ion density → more recombination) 

– E-field strength: determined timescale at which Ar+ / 
e- drift away from each other.

For electrons / photons much smaller variation in dE/dx vs. 
energy compared to muons/protons/pions.

→ significant effect, but ~constant.
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Space Charge

Positive ions in LAr drift at 10-3 the speed of 
electrons.

→ “space-charge” buildup in TPC.

Effect leads to distortions in electric field.

Local variations in E field In turn affect:

● Local drift speed → spatial “wiggles”

● Field magnitude → recomb. Effect.

Source: Study of Space Charge Effects in MicroBooNE: 
http://www­microboone.fnal.gov/publications/publicnotes/MICROBOONE­NOTE­1018­PUB.pdf
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Scintillation Light

Ben Jones @ Univ. Texas, Arlington
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Michel electrons : Radiative Photons

To recover radiative photons need to extend the search 
for charge tens of cm away from muon stopping point.

This presents challenges, especially for a surface 
detector with “dense” accidental cosmic activity. 

NIST XCOM

David Caratelli @ Columbia University
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Michel electrons : Monte Carlo energy resolution studies.

no γ tagging w/ γ tagging
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Michel electrons : Monte Carlo energy resolution studies.

no γ tagging w/ γ tagging
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Michel Electrons : Purity and Resolution
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