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Mimetic gravity

> Original model: Mimetic Dark Matter
proposed by Chamseddine and Mukhanov, 1308.5410;
Chamseddine, Mukhanov and Vikman, 1403.3961

A modification of General Relativity where Dark Matter arises as a pure gravitational
effect.

> S = /d4x\/——gR+Sm

/ new auxiliary metric

Juv =

w = " 0,p0,p



Mimetic gravity
> Eqns. in mimetic Dark Matter varying Sw.r.tto £,, and ¢
GH — T = (G — T) g"*g"* BapOsp
Vi((G = T)9") =0

N.B.1: the first equation is traceless

(G=T)(1—g¢"0,p0,p) =0 but | g"0,00,p = —1

Mimetic constraint

N.B.2: the first equation is equivalent to

RV — puv The new dggree (?f freedom (of gravitational qr/gln)
mimics an irrotational pressureless perfect fluid

(Dark Matter).
P = (G — T) ut = g“aﬁagp




Mimetic gravity

» Why one gets new equations of motions?

The original theory is generically Non-invertibility of the
invariant under disformal transf. disformal transformation
Juv = A(gp, w>€,u1/ + B(@? w)@ugp&,ga “ A(QO, ’U})
However there exists a particular l w

subset for which egn. of motion are

no longer the original ones. Mimetic constraint
Shown by Deruelle & Rua ’14; Barvinsky ’14 b(g&)g'uyau gpﬁygp —1=0
if you start from GR. We have generalized
to any type of scalar-tensor theory. Arroja, N. B., Karmakar, Matarrese,

JCAP 1509, 051 (2015)

N.B.: this is a very general statement, it is a kinematic constraint which i) does not
depend on the original theory one starts from; ii) holds irrespecitve of whether the
scalar field in the original action is the same or not as the one involved in the transf.

e.g.: mimetic dark matter corresponds to

B(p,X)=0 b(p,w)=—-1 and A(p,w)=—w



The mimetic constraint

» Suppose to have the disformal transformation

Juv = A(907 ’lU)EW/ + B(Spa w)amﬁauq? with B(QO, w) = —

w
A — wb
|—> g =+ S (0 0,0) (07 Dyp)

A Abw?

|—> HP0,p = bw g"P 0,

> Since w = 70,00, make the contraction

UF°0,00,p = w = bw g"" 0,0, 0 — [b(p)g"" 0O, —1 =10




Mimetic Horndeski

S :/d%;v—gﬂ[gw/, (3’>\1gw,, . ,8)\1 .. .(3’>\ng, ©, 8>\190, . ,8A1 .. .8>\q90] —+ Sm[gW, ¢m]

+/ d*x/=gA (D()g" DpipBup — 1) *» \

Original starting theory

\ (e.q. Horndeski).
Mimetic theory

» Some definitions of basic quantities

Q, — 0 (v—9£L) _0(V—g Z d  O(/=gL)

S dZEAl o daM 9 (O, .. 0N, )]
o _ 2 0/=9L0) 2 (0(/=g i’: o _d  9/=gL)
V=9 09 V=g 8g,w — da:/\l dz?r O (Ox, - .. O, Guv) |

\/__g 59,ul/ o 5¢m

)7 where S,, [gpbw Pm) = /d4$\/_—g£m [gpwa P

** See Golovnev ‘14, Barvinsky ‘14 for GR as the starting theory; Chamseddine, Mukhanov and Vikman ‘14.
Arroja, N. B. , Karmakar, Matarrese, JCAP 1509, 051 (2015)



Mimetic Horndeski

S :/d4x\/—g£[gw,, 8>\19MV7 C e ,3)\1 .. .EAng, o 8>\190, “ e ,8A1 .. .8>\q90] —+ Sm[gW, (bm]

+/Q%WCEMM@¢”@W&¢—1) \\\“

Original starting theory

\ (e.q. Horndeski).

Mimetic theory

» Mimetic Eqs. of motion: onceyouuse 2\ = F + T

b()g"" 0D, —1 =0

0 E+T 1 db This equation is
V. [(E+T)b(p)otg] — —= = 57 d(gO) < not independent
VI (p) dy from the others
EM +TH = (E 4+ T)b(p)0"pd” ¢
Q,, =0 \ Using the mimetic constraint you

can show that 0-0 component
is not independent




Mimetic Horndeski

Two simple examples of mimetic Horndeski cosmology.

The original starting action is
3
S = /d4a:\/—gEH = /d4x\/—gZ£n
n=0
= K(X,9),

— _G3 (X7 SO) DQO,
= Gux (X,9) [(00) = (VuVup)’] + RG4 (X, ),

1
= —Gx (X.9) [(Ds0)3 — 30 (VuVup)” +2(VuVoe)’ | + G V*V 0 Gs (X, )

= —1/2V ,,pVH+p



Mimetic Horndeski

» Example 1: choose as a starting theory GR + a minimally coupled scalar field
(with zero potential) and no matter (S, =0)

K(X790):C2X G3(X790):O G4(X790):1/2 G5(X7CP)ZO

» This minimal scalar field mimetic model can mimic the background evolution of a
perfect fluid universe with a constant equation of state w.
N.B.: of course not possible in the original theory where w=1.

—

: [ 2 — t
b(p)p” +1=0 a(t) = 15073 p(t) = £,/ — log —
C2 to
B - h 1 —
6H? + 4H + c29” = 0 b(p) = —— = =2 = 242V 7 ¢
- - P o Q
Here v = ——3(1%‘;)2

N.B.: see also Lim, Sawicki, Vikman, 2010, for a similar model.



Mimetic Horndeski

» Example 2: no matter (S_=0); mimetic cubic Galileon

K(X,QO):CQX G3(X,Q0)2203//~\X G4(X,g0):1/2 G5(X790):O

» By suitably choosing an appropriate b(¢p) one can mimic almost any background
expansion history, including ACDM

—

b(p)p? +1 =0

100 +

6H + 4H + ¢*(c2 — 4c3p) =0

0r

—

p o<

0.1+
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Mimetic Horndeski

» Some interesting aspects/motivations are

e itis a fairly general scalar-tensor theory.
As such it can mimic any background expansion history

e it contains many mimetic gravity models studied in the literature.

e it can provide a model of (unified) dark matter and dark energy.
It is @ matter of fact that no dark matter particles have been detected so far.

* it can provide models only for DE, or only for DM (and possibly inflation models)



Mimetic Horndeski

> Also some of the results of mimetic Horndeski models can be useful for
* extensions of mimetic DM models, where a term ((J ¢ ) 2 is added : can address
the small-scale ACDM problems if the sound speed is extremely small
(Chamseddine, Mukhanov, Vikman ‘14; Capela & Ramazanov 2014).

Notice that these extensions can find a UV justification: they are equivalent to the
infrared limit of the projectable Horava-Lifshitz gravity
(see Ramazanov, Arroja, Celoria, Matarrese, Pilo 2016)

Extensions of mimetic dark matter models with higher-derivatives models

can support vorticity
(e.g., Mirzagholi & Vikman, 2015; Barvinsky 2014).

* non-invertible disformal transformation applied to some (non-degenerate) actions
that can lead to DHOST theories
(see, e.g., Achour, Langlois, Noui, ‘16; Takahashi & Kobayashi ‘17).



Cosmological pert. in Mimetic Horndeski

» Linear perturbations:

goo = —a*(7) (1 +2®), go; =0, gij = a’*(1) (1 —20) 0i;

» Perturb Mimetic Eqs. of motion:

b()g" Bupdyp —1 =0  EM 4 TH = (B + T)b(0)d"d'y

For standard (non-interacting) “species” usual equations
(we consider just radiation and baryons: NO DM NOR DE PUT BY HAND)

Q=0

0; + 3H (c?f)s — wf) 05 — 3(1 + ws) ¥’ + (1 + wy) [—kQ — 9H? (c%f)s — c%f)a)} v; =0

c{ 2%?
(p)s (Sf + P — —
1+ Wy 3,0f (1 + wf)

v§ +H (1 — 3C?f)s) vy + 1I; = 0.



Cosmological pert. In Mimetic Horndeski

» Perturb Mimetic Eqs. of motion:
b(0)g" Dupdyp—1 =0  EW 4 T = (E+T)b(@)d"0d'¢  Dm =0

l l

mimetic constraint Traceless i-j egn. and 0-i
266" + @b ,6p — 260'® =0 [z + fadp + fo® 4+ a*Tl =0
a* (p+p)
J10

CL2

-I—HQ—H')%——([)—I—]?)U:O
f10

W+H¢+<

* here f, functions are a combination of the K, G;,G,, G and their derivatives



Cosmological pert. in Mimetic Horndeski

» N.B.: from the mimetic constraint

206" + @'b ,0p — 20¢'® = 0

Y
’U(p:—a

v;+7-£v¢—|—<I>:O

P

cf 2%?
(f)s 5f + ® — — Hf =0
1 + wy 3Ps (1 —I—wf)

v% + H (1 — 3C%f)s) vy +

the same as a perfect fluid with zero sound speed. This is a first indication that
in mimetic models scalar perturbations have zero sound speed.



Mimetic cubic Horndenski

» Let us restrict to the models

_ M3,
2

while b(y), K and G; are general.

G4 Gs =0

» These models include the original mimetic dark matter models of
Chamseddine and Mukhanov, 14+, and of Lim, Sawicki and Vikman “10.
They include the cubic Galileon mimetic model explained before

» At the background level they can mimic any desired expansion history
» At the (linear) perturbation level
?}:0 -+ 7_[7)90 +d =0 ® = W (since for these models f,=0, f,=M2,=-f,=f,/2)

a3y . (Pj + Dy) a?
D'+ HD + (— f_2]’\b4123; ! +H:—H Ucp‘FW}Q)l E (py + P =0
f=r,b




Equivalence with Pressureless Perfect Fluid DE

Suppose the model mimic the background expansion of a Perfect Fluid Dark energy
model (PFDE)

2ME,(H> —H')=a® ) (ps+py)

l f=r,m,DE

2
a _ _ _ _ _ _
' +HD + e (Pcpym + Pepm)ve + (PDE + PDE)Ve + Z (ps + Ps)vs| =0
P =
i f=rb )
: I Vs
O+ U + a2 M2 (pcpm + Pepm)vepm + (PpE + PDE)VDE + Z (pr +pp)vp| =0
Pl f=rb

The two egns. are the same if v is a dust velocity, i.e., if c_s(DE)=0 and if N, =0.

If the background expansion is that of PFDE (with any equation of state), these
simple mimetic models predict the same solution for @ as for pressurless PFDE.




Vanishing sound speed

» That mimetic Horndeski models can mimick pressureless PFDE might not come as

a surprise:
in JCAP 1604, 042 (2016) and in arXiv:1708.01850 we have shown that
(if the other fluids are dust) then the sound speed for scalar perturbations is zero.

» e.g.: for the mimetic cubic Horndeski models G,=1/2 and G.=0
" + @ (3H+f) + @ (H2+2H’+fH) =0

—H" +HH' + H?
H! — 'HQ
So in particular if the background is ACDM then @ is the same as in ACDM

T — 0 «—— ACDM background

» N.B.: we have also shown that the sound speed is zero also in G2 mimetic models.
Also we have shown that the sound speed is exactly zero in any background
in a fully non-perturbative way, see JCAP 1604, 042 (2016).



LSS in Mimetic Horndeski

» We have solved numerically the linear perturbations egns. for mimetic models and
for generic PFDE models under some simplifying approximations ( e.g.
hydrodynamical approx., instant recombination, and a toy model for decoupling).
We compare our results with CAMB for ACDM and with fitting functions by
Hu (‘98), Eisenstein & Hu (‘96) and Takada (06) = EHT for PFDE models

» Disclaimer: the main goal is not to constrain the parameters of the models with
great accuracy (for the moment), but we have performed a first step to show that
these mimetic models can give reasonable predictions for the linear power spectra



LSS in Mimetic Horndeski

6 x10-19 F Here for PFDE
). x 10 K
P = ): . B
1070 w(a) = wo + we(l —a)
) =10 _ . 2 _ .
2 4x1077[ === EHLCDM . : _
S A LCDM ] with
5 3x107°7F EHT PFDE ¢} =1 :
P B 2o . B
2. %10 Fwew PFDE c; =1 1w =—0.7, w, =0
= : EHT PFDE C, _()()l :
S S PFDE ¢, _()Ul ]
30 EHT PFI)E 2=0 ]
GbL7cm PEDE g 2-0 ——
0.30 | ' 3
3
g 025} )
2 020 LCDM -
£ o010} """ PFDE c%—(jml
3005 T PFDE ¢{=0 g
0.00 &

-4.0 =35 -3.0 =25 -2.0 -1.5 -1.0

Log 1o k (Mpc—l )

Good agreement (to about 10%) of our code with EHT fitting functions for & < 10~2Mpc~*



Distinguishing mimetic from PFDE models

» We used matter and galaxy power spectra extracted by
Okumura, Seljak, McDonald, Desjacques et al. ’12+ from N-body simulations for
ACDMproduced by Desjacques, Seljak, liliev 09.
From this get the power spectrum for ¢.

» 12 independent realizations, and error bars computed by the dispersion
(of the mean) among realizations (it does not include observational systematics).
Use these error bars as proxy of the statistical error bars for future LSS surveys.

N
T ae—— S S I
t
,
4

* X, |
t - .
-10 . |
10 5 |
oy | i
T - |
10 I - !
= - |
= | * |
~ I _l"‘ -
044 ;
x z
EH LCDM - |
10-13 | I SIM Galaxy .'21 {
0 - ,:
I SIM Matter o
| ﬁ
10-14 | _
-40 -35 -30 -25 -20 -15 -10 -05

Log 1o k (Mpc_l )



Distinguishing mimetic from PFDE models

Mimetic vs ACDM

LCDM

10~ 11 /\ ; 10~} i
3 PFDE ¢>=1 3 FDE ¢
o l“_” ) (_;... P i‘\s l(,—lx PFDE (A;—l .
i PFDE ¢{=10"" B PFDE c¢;=10""°
- 2 = © :
N —  PFDE =107 N —  PFDE =107
10-13 Mimetic 10-15 Mimetic
. SIM Galaxy - SIM Galaxy
. SIM Matter = = SIM Matter
1()_I7L““‘ “““““ it b St it i l()—l-/';A“AL...AL‘A..L‘At.l.s‘Ax‘..AL ........
= =2 = =25 =2 - - -
4.0 3.5 3.0 2.5 20 1.5 1.0 0.5 -40 =35 =30 =25 =20 -15 =10 =05
-1
Log 1o k (Mpe =!
og 1o k (Mpe™) Log 1o k (Mpe ™)
wo = —0.7, w, =0 wy = —0.95, w, =0

N.B.: distinguishability of mimetic from other models is strongly dependent on
the background: e.g., if the background is exactly fixed to the ACDM, then the
mimetic model exactly predicts the same power spectrum of ¢ as in ACDM.



Distinguishing mimetic from PFDE models

Mimetic vs PFDE with c =1

10—10L"'~xvr,.r""T“"_:"'”xv,,.r.,.,,,,,.r ] l“—lol"""""' o e e e | — - —r—r— 7
10-12} 0-12}
= s B i
0~ — PFDE ¢?=10""! L. 0 = PFDE ¢{=10 i
&, PFDE ¢*=107> a PFDE ¢=1072
y ° DE =103
10-16 PFDE ¢?=10"" & 1o-16 PRDE ;=107
— PFDE ¢?=10"* —  PFDE ¢=10"
~18 Mimetic jo=18 Mimetic
10 s SIM Galaxy b g SIM Galaxy
B o SIM Matter o n SIM Matter
250 11 [TV [PV COPNDPRRPRI, P ST | SPREPST O LU RN NP e e e
10 40 15 10 25 20 L5 1.0 05 -4.0 =35 -3.0 =25 =2.0 -1.5 -1.0 -0.5
= Tradiosa =J. T 4. =L =L\ —-V.

-1
= Log 1o k (Mpe )
Log 19 k (Mpc : ) 02 10 pe

wo = —0.7, w, =0 wo = —0.95, w, =0

We can distinguish the mimetic model from the PFDE models with c.=1



Distinguishing mimetic from PFDE models

Mimetic (with varying EOS)
vs ACDM

10-10
10~}
=12
— 10 12
) ST
8 s —_ PFDE ¢ =1
=% ]07" g A2 -2
a1 PFDE ¢2=1072
) :
Nl T | — PFDE ¢2=10"*
= 10 s
Mimetic
10-13 SR
- SIM Galaxy
10-16 | = SIM Matter
TPV VOSSN WA NS YOS VU VO VU VOSSN OSSN VOSSN VOSSO VOSSN VU VUSSRV VD OSSNy VU WU VU VG NS VO VS U VOIS iy v—_=—
-40 =35 =300 =25 -20 -15 -10 =05

I,()g 10 k (M])C_l )

Mimetic vs PFDE with c.=1
(with varying EQS)

1011
1012
— 74 -
. — PFDE ¢2=10"1
-13 IR T
e 10 PFDE ¢*=10
| s -3
° PFDE ¢ =10
& q0°14 DE 2=10~4
— PFDE ¢2=10
10-15 Mimetic
e 3 SIM Galaxy
10-16 . SIM Matter
| W WU SO VN VS SN VAN W VO S A VO VU VU W WS VS VS WSV VA VO VS VS Vi WSt V" w—" va—"-u—"\

-4.0 =3.5 -3.0 =25 -2.0 -1.5 -1.0 -0.5

Log 1o k (Mpe ™)

WpDE — —0.7 — 03(1 — CI,)

We can distinguish the mimetic model from both ACDM and

PFDE models with c=1



Some final comments

» If the predictions for @ are the same as PFDE with zero sound speed, than why
should we invoke the mimetic model?

* in mimetic a single component, the mimetic field, accounts for both DM and DE
* PFDE is more a phenomenological model. Mimetic can be regarded as a first step
towards possible underlying theories for PFDE

» Also: there are in fact potential ways to distinguish mimetic models from PFDE
with zero sound speed (to be explored)

* the equivalence of mimetic models with PFDE holds for adiabatic initial conditions
* such an equivalence holds for linear scales, so non-linear evolution
might be different
* direct detection of DM particles would rule out this scenario (the mimetic field is
assumed to be couplde only gravitationally with the standard model particles).



Conclusions

Mimetic gravity provides a scenario where both DM and DE can be mimicked by a
modification of gravity (both at the background and linear perturbation level).

Mimetic Horndeski is a fairly general model which encompasses many of the mimetic
models proposed so far.

We have studied in details its linear cosmological perturbations. In the simplest mimetic
cubic Horndeski models the mimetic field can describe both DM and DE mimicking perfect
fluid dark energy models with zero sound speed for the gravitational potentials (providing
un underlying theory for PFDE).

Possibility to distinguish these models from other popular DE models: e.g. they can be
distinguished from PFDE with unity sound speed if the e.o.s. is -0.95 on the basis of matter
(galaxy) power spectrum measurements.

There are ways to rule out the models: e.g., non-adiabatic initial conditions, direct/
indirect detection of DM particles

Various next steps are possible: extract other cosmological observables, like the usual
= and y parameters; implementation within standard numerical codes;
what about non-linear evolution; what about bias? ........









In the following some technical details
(see relevant papers)



Mimetic gravity

» Why one gets new equations of motions?

The original theory is generically
invariant under disformal transf.
However there exists a particular
subset such that the resulting
equations of motion are no longer
the original ones.

=)

Non-invertibility of the
disformal transformation

A(p,w
B =] ) | b
Mimetic constraint

b(¢)g"" Oupdyp —1=0

How to show this correspondence?




» Start from a given theory
g /d4x\/——g£[guy,8AlgW, Oy e O Gy U ON Y, O, Or ]+ Si[G s o]

and compute the egns. of motion

1

S = 5 /d4x\/—g(E”” +TH")og,, + /d4:v Quov + /d4:v Q00

> Now, apply the disformal transf. AT, ’LUB(\I!, w)0, V0,V

and hence write eqns. of motion w.r.t. auxiliary metric gwj and [/

T OA OB
pv pry pp vo
A(BE" + THv) (oq g aw)(z 0,) (£7°9, )
™ 1 A OB 0 1/ 9A OB
0 V79008 |BE+ 1)+ (ang s argn ) o || - T = (g ey )

—

= (B + T ) 0 ay = (B +T77)0,¥ 0,¥



» Contract the egns. with @W and 0,¥Y0,V¥

0A 0B 5 0A 2, 0B\
oq(A—w%>—oz2w%—O, a1 W %—&Q(A—w %>—O

Now the point is that the solutions of this algebaric system for &1 and (2 is different
according to its deteminant being zero or not.

EF+TH =0
GENERIC CASE: Det(M) #0 :> ap =az =0 —> Oy =0
v — Y.

This shows that generically the starting theory is invariant under disformal tranformnations

MIMETIC CASE: Det(M) = 0 j> B(¥,w) = _Aw) + b(D)

w

and in this case one obtains different eqns. of motion (the mimetic egns. showed before)

» finally: it is not difficult to show that this is exactly the condition for the disformal
transformation to be non-invertible



