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Mime/c	gravity	
Ø  	Original	model:	Mime/c	Dark	MaKer	
							proposed	by	Chamseddine	and	Mukhanov,	1308.5410;		
																														Chamseddine,	Mukhanov	and	Vikman,	1403.3961	
	
A	modifica/on	of	General	Rela/vity	where	Dark	MaKer	arises	as	a	pure	gravita/onal		
effect.		
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The	new	degree	of	freedom	(of	gravita-onal	origin)	
mimics	an	irrota/onal	pressureless	perfect	fluid	
(Dark	MaKer).	

BRIEF ARTICLE 7

(17) w ⌘ `µ⌫@µ'@⌫'

(17) S =

Z
d4x

p
�g R+ Sm

(17) Gµ⌫ � Tµ⌫
= (G� T ) gµ↵g⌫�@↵'@�'

(17)  

(17) rk((G� T )@k
 ) = 0

(17) (G� T )(1� gµ⌫@µ @⌫ ) = 0

(17) gµ⌫@µ @⌫ = 1

(17) Gµ⌫
= Tµ⌫

+ ⇢uµu⌫

(17)

˜Tµ⌫
= ⇢uµu⌫

(17) ⇢ = (G� T )

(17) uµ = gµ↵@↵ 

(17) B( , w) = �A( )

w
+ b( )

(17) b( , w) = �1

(17) A( , w) = �w

(17) w0 = �0.95, wa = 0

BRIEF ARTICLE 7

(17) w ⌘ `µ⌫@µ'@⌫'

(17) S =

Z
d4x

p
�g R+ Sm

(17) Gµ⌫ � Tµ⌫
= (G� T ) gµ↵g⌫�@↵'@�'

(17)  

(17) rk((G� T )@k') = 0

(17) (G� T )(1� gµ⌫@µ @⌫ ) = 0

(17) gµ⌫@µ @⌫ = 1

(17) Gµ⌫
= Tµ⌫

+ ⇢uµu⌫

(17)

˜Tµ⌫
= ⇢uµu⌫

(17) ⇢ = (G� T )

(17) uµ = gµ↵@↵ 

(17) B( , w) = �A( )

w
+ b( )

(17) b( , w) = �1

(17) A( , w) = �w

(17) w0 = �0.95, wa = 0

BRIEF ARTICLE 7

(17) w ⌘ `µ⌫@µ'@⌫'

(17) S =

Z
d4x

p
�g R+ Sm

(17) Gµ⌫ � Tµ⌫
= (G� T ) gµ↵g⌫�@↵'@�'

(17)  

(17) rk((G� T )@k') = 0

(17) (G� T )(1� gµ⌫@µ'@⌫') = 0

(17) gµ⌫@µ @⌫ = 1

(17) Gµ⌫
= Tµ⌫

+ ⇢uµu⌫

(17)

˜Tµ⌫
= ⇢uµu⌫

(17) ⇢ = (G� T )

(17) uµ = gµ↵@↵ 

(17) B( , w) = �A( )

w
+ b( )

(17) b( , w) = �1

(17) A( , w) = �w

(17) w0 = �0.95, wa = 0

BRIEF ARTICLE 7

(17) w ⌘ `µ⌫@µ'@⌫'

(17) S =

Z
d4x

p
�g R+ Sm

(17) Gµ⌫ � Tµ⌫
= (G� T ) gµ↵g⌫�@↵'@�'

(17)  

(17) rk((G� T )@k') = 0

(17) (G� T )(1� gµ⌫@µ'@⌫') = 0

(17) gµ⌫@µ'@⌫' = �1

(17) Gµ⌫
= Tµ⌫

+ ⇢uµu⌫

(17)

˜Tµ⌫
= ⇢uµu⌫

(17) ⇢ = (G� T )

(17) uµ = gµ↵@↵ 

(17) B( , w) = �A( )

w
+ b( )

(17) b( , w) = �1

(17) A( , w) = �w

(17) w0 = �0.95, wa = 0

BRIEF ARTICLE 7

(17) w ⌘ `µ⌫@µ'@⌫'

(17) S =

Z
d4x

p
�g R+ Sm

(17) Gµ⌫ � Tµ⌫
= (G� T ) gµ↵g⌫�@↵'@�'

(17)  

(17) rk((G� T )@k') = 0

(17) (G� T )(1� gµ⌫@µ'@⌫') = 0

(17) gµ⌫@µ'@⌫' = �1

(17) Gµ⌫
= Tµ⌫

+ ⇢uµu⌫

(17)

˜Tµ⌫
= ⇢uµu⌫

(17) ⇢ = (G� T )

(17) uµ = gµ↵@↵'

(17) B( , w) = �A( )

w
+ b( )

(17) b( , w) = �1

(17) A( , w) = �w

(17) w0 = �0.95, wa = 0

Mime/c	constraint	
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Mime/c	gravity	
Ø  	Why	one	gets	new	equa/ons	of	mo/ons?				
								
The	original	theory	is	generically	
invariant	under	disformal	transf.		
	
	
However	there	exists	a	par/cular	
subset	for	which	eqn.	of	mo/on	are	
no	longer	the	original	ones.	

Non-inver/bility	of	the		
disformal	transforma/on	
	
	
	
	
	
Arroja,	N.	B.	,	Karmakar,		Matarrese,		
JCAP	1509,	051		(2015)	

Shown	by	Deruelle	&	Rua	’14;	Barvinsky	’14	
if	you	start	from	GR.	We	have	generalized		
to	any	type	of	scalar-tensor	theory.	
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3

plus metric signature. Greek indices denote spacetime coordinate labels and run from 0 to 3, with 0 denoting the
time coordinate. Latin indices denote three-space coordinates and run from 1 to 3. The reduced Planck mass is
MPl = 1/

p
8⇡G, where G is Newton’s constant.

II. THE MIMETIC HORNDESKI GRAVITY AND NOTATION

In this section, we briefly introduce the mimetic Horndeski gravity model that was first proposed in [18]. In this
work, we shall use this model as a unified dark matter model. Then we shall discuss linear scalar perturbations, first
studied in [21]. We will mostly follow the notation of [21].

For a very general action of mimetic gravity,

S =

Z
d4x

p�gL[gµ⌫ , @�1gµ⌫ , . . . , @�1 . . . @�pgµ⌫ ,', @�1', . . . , @�1 . . . @�q'] + Sm[gµ⌫ ,�m]

+

Z
d4x

p�g� (b(')gµ⌫@µ'@⌫'� 1) , (1)

where ' is the mimetic scalar field, � is a Lagrange multiplier field, �m is a generic matter field with action Sm which
is coupled with the metric gµ⌫ only. b(') is a potential function and the integers p, q � 2. By defining the following
quantities

Eµ⌫ =
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�(
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�(
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�(
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��m
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where Lm is the matter Lagrangian density and Tµ⌫ denotes its energy-momentum tensor, one can write a complete
set of equations of motion as [18, 21]

b(')gµ⌫@µ'@⌫'� 1 = 0, (3)

Eµi + Tµi = (E + T )b(')@µ'@i', (4)

⌦m = 0. (5)

The first equation is known as the mimetic constraint and one sees that the time-time metric equation of motion
is redundant with respect to the previous set [21]. Furthermore, the mimetic scalar field equation of motion is also
redundant [21]. Eq. (5) implies the conservation of the energy momentum tensorrµT

µ⌫ = 0. The Lagrange multiplier
field is given by � = (E + T )/2, where E and T are the traces of Eµ⌫ and Tµ⌫ respectively. The Lagrangian L is the
Horndeski Lagrangian [19, 31] which is given by the sum of the following four terms

L0 = K (X,') , (6)

L1 = �G3 (X,')⇤', (7)

L2 = G4,X (X,')
h
(⇤')2 � (rµr⌫')

2
i
+RG4 (X,') , (8)

L3 = �1

6
G5,X (X,')

h
(⇤')3 � 3⇤' (rµr⌫')

2 + 2 (rµr⌫')
3
i
+Gµ⌫rµr⌫'G5 (X,') , (9)

where X = �1/2rµ'rµ', (rµr⌫')2 = rµr⌫'rµr⌫' and (rµr⌫')3 = rµr⌫'rµr⇢'r⌫r⇢'. The subscripts
,' and , X denote derivatives with respect to ' and X respectively. The Horndeski functions K, G3, G4, G5 of the
two variables, X and ', define a particular (mimetic) Horndeski theory.

We now turn to the study of linear scalar perturbations in this model with the matter field being described by a
fluid. All the necessary background and perturbed equations of motion can be found in Appendices A, B and C of
[21]. Here we will briefly present only the equations which we will need to use later.

We will work in the Poisson gauge, neglect vector and tensor perturbations and assume a spatially flat Friedmann-
Lemâıtre-Robertson-Walker (FLRW) background. The metric is then written as

g00 = �a2(⌧) (1 + 2�) , g0i = 0, gij = a2(⌧) (1� 2 ) �ij , (10)

where a is the FLRW scale factor that depends on the conformal time ⌧ , � denotes the generalised Newtonian
(Bardeen) potential and  the curvature perturbation. The scalar field is expanded as '(⌧,x) = '̄(⌧) + �'(⌧,x),
where '̄ denotes the background field value and �' is its perturbation. A prime denotes derivative with respect to
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p
8⇡G, where G is Newton’s constant.

II. THE MIMETIC HORNDESKI GRAVITY AND NOTATION

In this section, we briefly introduce the mimetic Horndeski gravity model that was first proposed in [18]. In this
work, we shall use this model as a unified dark matter model. Then we shall discuss linear scalar perturbations, first
studied in [21]. We will mostly follow the notation of [21].
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��m
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Z
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where Lm is the matter Lagrangian density and Tµ⌫ denotes its energy-momentum tensor, one can write a complete
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is redundant with respect to the previous set [21]. Furthermore, the mimetic scalar field equation of motion is also
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i
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where '̄ denotes the background field value and �' is its perturbation. A prime denotes derivative with respect to
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simplification)

b(ϕ)gµν∂µϕ∂νϕ− 1 = 0, (2)

Ωϕ +
√
−g

λ

b(ϕ)

db(ϕ)
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− 2∂µ
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−gλb(ϕ)gµν∂νϕ

)

= 0, (3)
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δ (

√
−gL)
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∂(
√
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∂ϕ
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q
∑

h=1

(−1)h
d

dxλ1
. . .

d

dxλh

∂(
√
−gL)

∂ (∂λ1 . . . ∂λh
ϕ)

, (6)

Eµν =
2

√
−g

δ(
√
−gL)

δgµν
=

2
√
−g

(

∂(
√
−gL)

∂gµν
+

p
∑

h=1

(−1)h
d

dxλ1
. . .

d

dxλh

∂(
√
−gL)

∂ (∂λ1 . . .∂λh
gµν)

)

, (7)

T µν =
2

√
−g

δ(
√
−gLm)

δgµν
, Ωm =

δ(
√
−gLm)

δφm
, where Sm[gµν ,φm] =

∫

d4x
√
−gLm[gµν ,φm], (8)

where Lm is the matter Lagrangian density and T µν denotes its energy-momentum tensor. Taking the trace of Eq.
(4) and using Eq. (2), one obtains

2λ = E + T, (9)

where E = gµνEµν and T = gµνT µν . One can see that the Lagrange multiplier is given by the traces E and T and
this can be used to eliminate λ from the equations of motion to obtain

b(ϕ)gµν∂µϕ∂νϕ− 1 = 0, (10)

∇µ [(E + T )b(ϕ)∂µϕ]−
Ωϕ√
−g

=
E + T

2

1

b(ϕ)

db(ϕ)

dϕ
, (11)

Eµν + T µν = (E + T )b(ϕ)∂µϕ∂νϕ, (12)

Ωm = 0. (13)

The previous set of equations are the equations of motion for the theory (1). However not all the equations in the set
are independent from each other. As shown in [9], Eq. (11) can be derived from the other equations. Also as we will
now show, the 0− 0 component of Eqs. (12) can be derived from Eq. (2) and the remaining components of Eqs. (12).
Let us start with the constraint equation

b(ϕ)gµν∂µϕ∂νϕ = b(ϕ)g00(ϕ′)2 + 2b(ϕ)g0i(ϕ′)∂iϕ+ b(ϕ)gij∂iϕ∂jϕ = 1, (14)

where ′ denotes the derivative with respect to the time coordinate (which in the next section we choose to be conformal
time). Multiply both sides of the previous equation by E + T to obtain

(E + T )b(ϕ)g00(ϕ′)2 + 2(E + T )b(ϕ)g0i(ϕ′)∂iϕ+ (E + T )b(ϕ)gij∂iϕ∂jϕ

= g00(E00 + T00) + 2g0i(E0i + T0i) + gij(Eij + Tij), (15)

where Latin indexes run from one to three only. By using the other components of Eqs. (12), i.e.

Eij + Tij = (E + T )b(ϕ)∂iϕ∂jϕ, E0i + T0i = (E + T )b(ϕ)ϕ′∂iϕ, (16)

one can show that Eq. (15) simplifies to

(E + T )b(ϕ)g00(ϕ′)2 = g00(E00 + T00). (17)

Because g00 ̸= 0 we have the desired result that Eqs. (16) together with the constraint equation imply

E00 + T00 = (E + T )b(ϕ)(ϕ′)2. (18)

This is a non-perturbative result and it will be important when counting the number of perturbation variables and
their equations in the next section.
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class and showed that they possess interesting cosmological solutions. For instance, the simplest mimetic model is
able to mimic the cosmological background evolution of a flat FLRW model with a barotropic perfect fluid with any
constant equation of state (see also [15] for an earlier work). Actually by appropriately choosing the function b(ϕ) in
the transformation one can mimic almost any desired expansion history.
In the original mimetic model [1] and its generalisation to include a potential [2], it was shown that the sound

speed of scalar perturbations is exactly zero (independently of the desired expansion history) and consequently this
model cannot describe a successful inflationary model because quantum fluctuations cannot be defined as usual. To
circumvent this problem, it was proposed to introduce higher-derivatives terms in the action [2]. In this way a non-zero
sound speed can be generated. These higher-derivative terms help to suppress power for large momentum and it has
been argued that this can be relevant for the small-scale problems of cold dark matter [16].
The main purposes of this work are to study linear scalar perturbations in mimetic Horndeski gravity and to

determine the corresponding value of the sound speed. These results will determine the growth of structure in
mimetic Horndeski models.
In the meantime, there have been many works studying different aspects of the original mimetic theory and gener-

alisations. For example, the Hamiltonian analysis was performed in [17, 18], cosmological perturbations were further
analyzed in [19], extensions to f(R) type models were presented in [20, 21], [22] studied the energy conditions and a
generalization, a mimetic theory including a vector field was proposed in [3], cosmology in mimetic Galileon models
studied in [23, 24], and the imperfect fluid nature induced by higher-derivative terms was further discussed in [25].
This paper is organised as follows. In the next section, we introduce the model and some notation. We also show

the general equations of motion of scalar-tensor mimetic gravity and discuss their independence. In section III, we
discuss linear scalar perturbations of mimetic Horndeski in the Poisson gauge excluding other matter fields. We will
compute the background equations of motion, then the first-order equations of motion for the Newtonian potential
which we solve for the two toy models introduced in [9]. Section IV is devoted to the initial value formulation of
the problem and to the discussion on the sound speed in general cosmological backgrounds. Section V presents the
conclusions of the paper. The paper has 4 appendices. In appendix A we present the explicit expressions for the
background equations of motion. Appendix B contains the expressions for the functions defined in the main text
and that enter the first-order equations of motion. In appendix C, we present the background and linear equations
of motion for the mimetic Horndeski model including matter in the form of a fluid that may have anisotropic stress.
Finally in appendix D, we compute the sound speed in a theory beyond mimetic Horndeski. We call this theory
mimetic G3 theory as it is the mimetic version of the so-called G3 theory [13, 14].
The reduced Planck mass is set to unity throughout the paper and we use the mostly plus metric signature.

II. THE MODEL AND NOTATION

In this section we will start by introducing a very general scalar-tensor theory of gravity including a term with a
Lagrange multiplier following [9]. We will mostly follow notation of [9] which we briefly summarise in this section too.
There, it was shown that mimetic gravity has a dual formulation. One formulation is via a (non-invertible) disformal
transformation as discussed in the introduction and the other formulation, that we will follow in this paper, is by using
a Lagrange multiplier to impose the so-called mimetic constraint. In the following sections, where we will present
explicit results for linear cosmological perturbations, we will restrict the very general mimetic scalar-tensor theory
to the mimetic Horndeski theory. Horndeski’s theory [10] is the most general 4D covariant theory of scalar-tensor
gravity that is derived from an action and gives rise to second-order equations of motion (in all gauges and in any
background) for both the metric and the scalar field. This useful property guarantees that the mimetic theory is free
from higher-derivative ghosts because, as shown in [9], if the original theory is free from these ghosts then also the
mimetic theory that it originates is free from them.
Let us start with the very general action for scalar-tensor mimetic gravity as

S =

∫

d4x
√
−gL[gµν , ∂λ1gµν , . . . , ∂λ1 . . .∂λp

gµν ,ϕ, ∂λ1ϕ, . . . , ∂λ1 . . .∂λq
ϕ] + Sm[gµν ,φm]

+

∫

d4x
√
−gλ (b(ϕ)gµν∂µϕ∂νϕ− 1) , (1)

where λ is a Lagrange multiplier and ϕ is the mimetic scalar field. b(ϕ) is a known potential function, p, q ≥ 2
are integers. Sm denotes the action for some matter field φm which we assume that is coupled with gµν only. The
equations of motion that result from varying the action with respect to λ, ϕ, gµν and φm are respectively (after some
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So the equations of motion (25) simplify to

Eµν + Tµν = (E + T ) b ∂µΨ ∂νΨ, ∇ρ [(E + T )b ∂ρΨ]−
ΩΨ√
−g

=
1

2
(E + T )

1

b

db

dΨ
, (29)

where ∇ρ denotes the covariant derivative with respect to gµν . In order to have the full system of equations of motion,
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ΩΨ +
√
−g

λ

b(Ψ)

db(Ψ)
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(√
−gλb(Ψ)gµν∂νΨ

)

= 0, (32)
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E + T
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1

b(Ψ)

db(Ψ)

dΨ
, (37)
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Ωm = 0. (39)

These equations of motion are the same as the mimetic equations of motion in subsection II B, i.e. (28), (29) and
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∇µE
µν = ∇µ [(E + T )b(Ψ)∂µΨ]∂νΨ+ (E + T )b(Ψ)∂µΨ∇µ∂

νΨ

= ∂νΨ

[

∇ν [(E + T )b(Ψ)∂µΨ]−
1

2

1

b(Ψ)

db(Ψ)

dΨ
(E + T )

]

, (40)

2 The conservation of the energy-momentum tensor is a consequence of assuming that the action Sm can be written as a functional of the
matter field and the metric gµν and by using the Horndeski identity, Eq. (41), applied to the matter action together with the equation
of motion (39).
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Finally in appendix D, we compute the sound speed in a theory beyond mimetic Horndeski. We call this theory
mimetic G3 theory as it is the mimetic version of the so-called G3 theory [13, 14].
The reduced Planck mass is set to unity throughout the paper and we use the mostly plus metric signature.
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The main purposes of this work are to study linear scalar perturbations in mimetic Horndeski gravity and to

determine the corresponding value of the sound speed. These results will determine the growth of structure in
mimetic Horndeski models.
In the meantime, there have been many works studying different aspects of the original mimetic theory and gener-

alisations. For example, the Hamiltonian analysis was performed in [17, 18], cosmological perturbations were further
analyzed in [19], extensions to f(R) type models were presented in [20, 21], [22] studied the energy conditions and a
generalization, a mimetic theory including a vector field was proposed in [3], cosmology in mimetic Galileon models
studied in [23, 24], and the imperfect fluid nature induced by higher-derivative terms was further discussed in [25].
This paper is organised as follows. In the next section, we introduce the model and some notation. We also show

the general equations of motion of scalar-tensor mimetic gravity and discuss their independence. In section III, we
discuss linear scalar perturbations of mimetic Horndeski in the Poisson gauge excluding other matter fields. We will
compute the background equations of motion, then the first-order equations of motion for the Newtonian potential
which we solve for the two toy models introduced in [9]. Section IV is devoted to the initial value formulation of
the problem and to the discussion on the sound speed in general cosmological backgrounds. Section V presents the
conclusions of the paper. The paper has 4 appendices. In appendix A we present the explicit expressions for the
background equations of motion. Appendix B contains the expressions for the functions defined in the main text
and that enter the first-order equations of motion. In appendix C, we present the background and linear equations
of motion for the mimetic Horndeski model including matter in the form of a fluid that may have anisotropic stress.
Finally in appendix D, we compute the sound speed in a theory beyond mimetic Horndeski. We call this theory
mimetic G3 theory as it is the mimetic version of the so-called G3 theory [13, 14].
The reduced Planck mass is set to unity throughout the paper and we use the mostly plus metric signature.

II. THE MODEL AND NOTATION

In this section we will start by introducing a very general scalar-tensor theory of gravity including a term with a
Lagrange multiplier following [9]. We will mostly follow notation of [9] which we briefly summarise in this section too.
There, it was shown that mimetic gravity has a dual formulation. One formulation is via a (non-invertible) disformal
transformation as discussed in the introduction and the other formulation, that we will follow in this paper, is by using
a Lagrange multiplier to impose the so-called mimetic constraint. In the following sections, where we will present
explicit results for linear cosmological perturbations, we will restrict the very general mimetic scalar-tensor theory
to the mimetic Horndeski theory. Horndeski’s theory [10] is the most general 4D covariant theory of scalar-tensor
gravity that is derived from an action and gives rise to second-order equations of motion (in all gauges and in any
background) for both the metric and the scalar field. This useful property guarantees that the mimetic theory is free
from higher-derivative ghosts because, as shown in [9], if the original theory is free from these ghosts then also the
mimetic theory that it originates is free from them.
Let us start with the very general action for scalar-tensor mimetic gravity as

S =

∫

d4x
√
−gL[gµν , ∂λ1gµν , . . . , ∂λ1 . . .∂λp

gµν ,ϕ, ∂λ1ϕ, . . . , ∂λ1 . . .∂λq
ϕ] + Sm[gµν ,φm]

+

∫

d4x
√
−gλ (b(ϕ)gµν∂µϕ∂νϕ− 1) , (1)

where λ is a Lagrange multiplier and ϕ is the mimetic scalar field. b(ϕ) is a known potential function, p, q ≥ 2
are integers. Sm denotes the action for some matter field φm which we assume that is coupled with gµν only. The
equations of motion that result from varying the action with respect to λ, ϕ, gµν and φm are respectively (after some

3

simplification)

b(ϕ)gµν∂µϕ∂νϕ− 1 = 0, (2)

Ωϕ +
√
−g

λ

b(ϕ)

db(ϕ)

dϕ
− 2∂µ

(√
−gλb(ϕ)gµν∂νϕ

)

= 0, (3)

Eµν + T µν − 2λb(ϕ)∂µϕ∂νϕ = 0, (4)

Ωm = 0, (5)

where

Ωϕ =
δ (

√
−gL)
δϕ

=
∂(
√
−gL)
∂ϕ

+
q
∑

h=1

(−1)h
d

dxλ1
. . .

d

dxλh

∂(
√
−gL)

∂ (∂λ1 . . . ∂λh
ϕ)

, (6)

Eµν =
2

√
−g

δ(
√
−gL)

δgµν
=

2
√
−g

(

∂(
√
−gL)

∂gµν
+

p
∑

h=1

(−1)h
d

dxλ1
. . .

d

dxλh

∂(
√
−gL)

∂ (∂λ1 . . .∂λh
gµν)

)

, (7)

T µν =
2

√
−g

δ(
√
−gLm)

δgµν
, Ωm =

δ(
√
−gLm)

δφm
, where Sm[gµν ,φm] =

∫

d4x
√
−gLm[gµν ,φm], (8)

where Lm is the matter Lagrangian density and T µν denotes its energy-momentum tensor. Taking the trace of Eq.
(4) and using Eq. (2), one obtains

2λ = E + T, (9)

where E = gµνEµν and T = gµνT µν . One can see that the Lagrange multiplier is given by the traces E and T and
this can be used to eliminate λ from the equations of motion to obtain

b(ϕ)gµν∂µϕ∂νϕ− 1 = 0, (10)

∇µ [(E + T )b(ϕ)∂µϕ]−
Ωϕ√
−g

=
E + T

2

1

b(ϕ)

db(ϕ)

dϕ
, (11)

Eµν + T µν = (E + T )b(ϕ)∂µϕ∂νϕ, (12)

Ωm = 0. (13)

The previous set of equations are the equations of motion for the theory (1). However not all the equations in the set
are independent from each other. As shown in [9], Eq. (11) can be derived from the other equations. Also as we will
now show, the 0− 0 component of Eqs. (12) can be derived from Eq. (2) and the remaining components of Eqs. (12).
Let us start with the constraint equation

b(ϕ)gµν∂µϕ∂νϕ = b(ϕ)g00(ϕ′)2 + 2b(ϕ)g0i(ϕ′)∂iϕ+ b(ϕ)gij∂iϕ∂jϕ = 1, (14)

where ′ denotes the derivative with respect to the time coordinate (which in the next section we choose to be conformal
time). Multiply both sides of the previous equation by E + T to obtain

(E + T )b(ϕ)g00(ϕ′)2 + 2(E + T )b(ϕ)g0i(ϕ′)∂iϕ+ (E + T )b(ϕ)gij∂iϕ∂jϕ

= g00(E00 + T00) + 2g0i(E0i + T0i) + gij(Eij + Tij), (15)

where Latin indexes run from one to three only. By using the other components of Eqs. (12), i.e.

Eij + Tij = (E + T )b(ϕ)∂iϕ∂jϕ, E0i + T0i = (E + T )b(ϕ)ϕ′∂iϕ, (16)

one can show that Eq. (15) simplifies to

(E + T )b(ϕ)g00(ϕ′)2 = g00(E00 + T00). (17)

Because g00 ̸= 0 we have the desired result that Eqs. (16) together with the constraint equation imply

E00 + T00 = (E + T )b(ϕ)(ϕ′)2. (18)

This is a non-perturbative result and it will be important when counting the number of perturbation variables and
their equations in the next section.

Original	star/ng	theory	
(e.g.	Horndeski).		
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where in the second line we have used that b(Ψ)∂µΨ∂µΨ = 1 and that from its covariant derivative one obtains

b(Ψ)∇µ∇νΨ∂µΨ = − 1
2
db(Ψ)
dΨ ∇νΨ∂µΨ∂µΨ. It was shown by Horndeski [29] (see also references therein) that

√
−g∇µE

µν = ΩΨ∇νΨ. (41)

Using this and the fact that ∂νΨ ̸= 0 at least for one index ν we can simplify Eq. (40) to

∇µ [(E + T )b(Ψ)∂µΨ]−
ΩΨ√
−g

=
E + T

2

1

b(Ψ)

db(Ψ)

dΨ
. (42)

This is exactly the same equation as (37). So we have managed to show that Eq. (37) results from taking the
covariant derivative of Eq. (38) and use ∇µT µν = 0 and Eqs. (36) and (39). This proof is independent of using the
Lagrange multiplier method or not and shows that in order to solve the dynamics of the system it is sufficient to
consider Eqs. (36), (38) and (39). These three equations, when written in terms of the metric gµν , do not contain any
more higher-order derivatives that the equations of motion that result from the non-mimetic theory defined by the
Lagrangian L. It is also worth noting that the action (30) does not contain any more higher-order derivatives than L.
However, the new theory (30) does contain a new field, the Lagrange multiplier λ. The three independent equations
of motion when written in terms of the new metric ℓµν may contain higher-order derivatives. For concreteness, we
can think of L as being the Horndeski Lagrangian [29]3 and we would be considering the “mimetic” Horndeski theory.

IV. NON-TRIVIAL EXAMPLES OF COSMOLOGY IN THE “MIMETIC” HORNDESKI MODEL

As an application of the results of the preceding sections, in this section, we will present three simple examples of
non-trivial cosmological solutions that arise in very simple “mimetic” Horndeski models.
The most general class of 4D local scalar-tensor theories that contain second-order equations of motion and that

can be derived from an action is known as the Horndeski theory [29]. Its action is

SH =

∫

d4x
√
−gLH =

∫

d4x
√
−g

3
∑

n=0

Ln, (43)

where

L0 = K (X,Ψ) , (44)

L1 = −G3 (X,Ψ)!Ψ, (45)

L2 = G4,X (X,Ψ)
[

(!Ψ)2 − (∇µ∇νΨ)2
]

+RG4 (X,Ψ) , (46)

L3 = −
1

6
G5,X (X,Ψ)

[

(!Ψ)3 − 3!Ψ (∇µ∇νΨ)2 + 2 (∇µ∇νΨ)3
]

+Gµν∇µ∇νΨG5 (X,Ψ) , (47)

and X = −1/2∇µΨ∇µΨ, (∇µ∇νΨ)2 = ∇µ∇νΨ∇µ∇νΨ and (∇µ∇νΨ)3 = ∇µ∇νΨ∇µ∇ρΨ∇ν∇ρΨ. The functions
K(X,Ψ), G3(X,Ψ), G4(X,Ψ) and G5(X,Ψ) are free function of their two variables and define a particular theory
in the Horndeski class. The subscript ,X denotes derivative with respect to X . In the next three subsections the
actions of the models considered will be Eq. (30) with L = LH but with different choices for the free functions in
each subsection.
Notice that for a general mimetic Horndeski model, the free function b(Ψ) in the second term of Eq. (30) can be

reabsorbed by defining a new field Φ as dΦ =
√

|b|dΨ. Because the Horndeski Lagrangian is form invariant under
field redefinitions of this type, this transformation just amounts to consider a different starting Horndeski Lagrangian
LH .

A. A very simple example

In our first simple example we will consider the mimetic theory of a canonical kinetic term scalar field with no
potential coupled to Einstein’s gravity theory. The action of this model is Eq. (30) with L = LH , Sm = 0 and with
the choice

K(X,Ψ) = c2X, G3(X,Ψ) = 0, G4(X,Ψ) = 1/2, G5(X,Ψ) = 0, (48)

3 One can also consider healthy extensions of Horndeski’s theory, like for instance the so-called G3 theories [32, 33] or even their extensions
[34].

4

In the remainder of the paper, for the reasons previously mentioned, we will only consider a particular subset of
theories of the form (1) known as mimetic Horndeski theory. The action of mimetic Horndeski gravity is defined by
Eq. (1) where the Lagrangian density L is given by Horndeski’s Lagrangian density LH as

SH =

∫

d4x
√
−gLH =

∫

d4x
√
−g

3
∑

n=0

Ln, (19)

where

L0 = K (X,ϕ) , (20)

L1 = −G3 (X,ϕ)!ϕ, (21)

L2 = G4,X (X,ϕ)
[

(!ϕ)2 − (∇µ∇νϕ)
2
]

+RG4 (X,ϕ) , (22)

L3 = −
1

6
G5,X (X,ϕ)

[

(!ϕ)3 − 3!ϕ (∇µ∇νϕ)
2 + 2 (∇µ∇νϕ)

3
]

+Gµν∇µ∇νϕG5 (X,ϕ) , (23)

and X = −1/2∇µϕ∇µϕ, (∇µ∇νϕ)2 = ∇µ∇νϕ∇µ∇νϕ and (∇µ∇νϕ)3 = ∇µ∇νϕ∇µ∇ρϕ∇ν∇ρϕ. The subscript , X
denotes derivative with respect to X and in the following derivative with respect to ϕ will be denoted by a subscript
,ϕ. The functions K, G3, G4, G5 of two variables, X and ϕ, define a particular (mimetic) Horndeski theory.

III. LINEAR SCALAR PERTURBATIONS

This section is devoted to the study of cosmological linear scalar perturbations in the mimetic Horndeski gravity.
Here we will assume that there is no matter in the model, i.e. Sm = 0. We expect this to be a good approximation
during the time when the effective energy density of the mimetic scalar field is much larger than the other usual
components of the total energy density like radiation or cold dark matter. In appendix C we present the equations of
motion of the mimetic Horndeski model including a matter source in the form of a fluid which may have anisotropic
stress as it would be the case for free-streaming neutrinos. Before that, in the next subsection we will present
well-known (see for instance [12, 26]) results for linear scalar perturbations in Horndeski gravity, as a warm up.
We will work in the Poisson gauge. Because we are only interested in scalar perturbations, we will neglect vector

and tensor perturbations. At linear order and in the flat FLRW background that we will assume, these different type
of perturbations are all decoupled.
The metric is perturbed as

g00 = −a2(τ) (1 + 2Φ) , g0i = 0, gij = a2(τ) (1− 2Ψ) δij , (24)

where a is the FLRW scale factor that depends on the conformal time τ , Φ denotes the generalised Newtonian
(Bardeen) potential and Ψ the curvature perturbation. The inverse metric is

g00 = −a−2(τ) (1− 2Φ) , g0i = 0, gij = a−2(τ) (1 + 2Ψ) δij . (25)

The scalar field is expanded as ϕ(τ,x) = ϕ0(τ) + δϕ(τ,x), where ϕ0 denotes the background field value and δϕ is the
field perturbation.

A. Linear scalar perturbations in Horndeski

We will study linear perturbations of Horndeski gravity only in this subsection. The theory is defined by the action
(19). The tensor Eµν introduced in the previous section will be the same for both Horndeski and mimetic Horndeski
gravity as it is clear from its definition.
Because we assume that there are no matter sources and the equation of motion for ϕ is not independent from the

metric equations of motion as it is well-known2, the equations of motion are simply

Eµν = 0. (26)

2 This well-known fact can be simply understood to be a consequence of Horndeski’s identity [10] (see also references therein), i.e.,√
−g∇µEµν = Ωϕ∇νϕ. For a general scalar-tensor theory defined by the first line of Eq. (1), which includes Horndeski’s theory as

a particular case, the equation of motion for the scalar field is Ωϕ = 0, which implies, by using the previous identity, ∇µEµν = 0.
The previous equation is the generalization of the usual equation for the conservation of the energy-momentum tensor. Eq. (26)
automatically implies that the equation of motion for the scalar field is satisfied.
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							N.B.:	of	course	not	possible	in	the	original	theory	where	ω=1.	
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where c2 is a constant which may have either sign. In the non-mimetic theory, if c2 is negative it is well known that the
scalar field has the wrong sign in the kinetic term and is a ghost. In the present mimetic model it would be interesting
to study perturbations and determine what are the conditions for the absence of ghost and other instabilities. We
leave this work for the near future. With the same notation of the previous section and for a flat FLRW background,
the objects that appear there are

E00 = −3H2 +
1

2
c2Ψ̇

2, (49)

Exx = Eyy = Ezz = a2(3H2 + 2Ḣ +
1

2
c2Ψ̇

2), (50)

E = 12H2 + 6Ḣ + c2Ψ̇
2, (51)

ΩΨ = a3
(

−3c2HΨ̇− c2Ψ̈
)

, (52)

where a is the scale factor, H = ȧ/a and dot denotes derivative with respect to cosmic time. x, y, z denote the
comoving spatial coordinates. The equations of motion for this simple mimetic model, i.e. Eq. (36), the time and
spatial components of Eq. (38) and Eq. (37), are respectively

b(Ψ)Ψ̇2 + 1 = 0, (53)

3H2 =
Ψ̇2

2

[

c2 − 2b(Ψ)
(

12H2 + 6Ḣ + c2Ψ̇
2
)]

, (54)

6H2 + 4Ḣ + c2Ψ̇
2 = 0, (55)

b(Ψ)
[

−6H(6H2Ψ̇+ 7Ψ̇Ḣ + 2HΨ̈)− 6ḢΨ̈− 6Ψ̇Ḧ − 3c2Ψ̇
2(HΨ̇+ Ψ̈)

]

+c2(3HΨ̇+ Ψ̈) + b′(Ψ)

(

1

b(Ψ)
+ 2Ψ̇2

)

[

−6H2 − 3Ḣ −
c2
2
Ψ̇2
]

= 0, (56)

where prime denotes derivative with respect to the field Ψ. Eqs. (54) and (56) are not independent from Eqs. (53)
and (55) because they can be derived from them.
It is easy to check that Eqs. (53) and (55) admit the following solution

a(t) = t
2

3(1+ω) , Ψ(t) = ±
√

−
α

c2
log

t

t0
, b(Ψ) = −

1

Ψ̇2
=

c2
α
t2 =

c2
α
t20e

±2
√

−
c2
α
Ψ, (57)

where t0 is an integration constant, the parameter α is α = − 8ω
3(1+ω)2 , where ω is a constant parameter. This expansion

law is the same as the one given by a perfect fluid universe with a constant equation of state ω. If c2 is positive then
the equation of state ω has to be positive too. This shows that this simple mimetic scalar field model can mimic
the background evolution of a perfect fluid universe with a constant equation of state. For different ω the value of α
changes but the functional form of b(Ψ) does not change. It is obvious that this new solution is not a solution of the
Einstein plus Klein-Gordon (with zero potential) field theory. There ω is necessarily unity.
By adjusting the function b(Ψ) accordingly (note that b(Ψ) < 0 for a time-like scalar velocity), this simple model

can mimic the expansion history of almost any model. To be concrete, we can mimic the expansion history of a perfect
fluid model with a fixed sign of the pressure. In that case, 6H2 + 4Ḣ = −2p, where p is the pressure of the perfect
fluid. So from the independent equation of motion (55) one can see that the pressure cannot change sign. The fact
that one can have almost any expansion history desired is somewhat similar to the minimal extension of the original
mimetic dark matter model proposed in [12]. See also [13] for an earlier work where models similar to our present
one were considered.

B. Mimetic cubic Galileon

In this subsection, we will consider the mimetic cubic Galileon model as a further example of a simple mimetic
Horndeski model. The mimetic cubic Galileon model with c2 = 0 (and also including the other Galileon interactions)
was previously studied in [35] but for the case of a constant b(Ψ). Here we allow the function b to depend on Ψ. The
action of the model is Eq. (30) with L = LH , Sm = 0 and with the free functions chosen as

K(X,Ψ) = c2X, G3(X,Ψ) = 2c3/Λ̃
3X, G4(X,Ψ) = 1/2, G5(X,Ψ) = 0, (58)

where from now on we will set the cutoff scale Λ̃ to be Λ̃ = 1 and c3 is a new model parameter.

N.B.:	see	also	Lim,	Sawicki,	Vikman,	2010,	for	a	similar	model.		
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Mime/c	Horndeski	
Ø  	Example	2:	no	maKer	(Sm=0);	mime/c	cubic	Galileon	

Ø  	By	suitably	choosing	an	appropriate	b(ϕ)	one	can	mimic	almost	any	background		
						expansion	history,	including	ΛCDM	

9

Analogously to the previous subsection, there are only two independent equations of motion, they can be chosen to
be Eq. (36) and the spatial component of Eq. (38). They are respectively

b(Ψ)Ψ̇2 + 1 = 0, (59)

6H2 + 4Ḣ + Ψ̇2(c2 − 4c3Ψ̈) = 0. (60)

As in the preceding section by suitably choosing a function b(Ψ) one can have almost any expansion history desired. Let
us for instance concentrate on the expansion history of a universe filled with dark matter and a positive cosmological
constant Λ. The scale factor solution for that universe is

a = a⋆ sinh
2
3 (Ct), (61)

where C =
√

3Λ/4. Eq. (60) can be integrated once to find

4c3
c2

[

− arctan

(

±
√

3c2
8C2

Ψ̇

)

±
√

3c2
8C2

Ψ̇

]

= t. (62)

In Fig. 1 we plot the time evolution of the scale factor a(t), the time derivative of Ψ and by using Eq. (59) one can
find the function b(t). For illustration purposes we choose the model parameters as C = c2 = c3 = a⋆ = 1. For this
choice, the matter-dominated era ends around t = O(1) and after that the universe becomes dominated by the energy
density of the cosmological constant. For Ct ≫ 1, the time derivative of Ψ is Ψ̇ ∝ t while for Ct ≪ 1 it becomes
Ψ̇ ∝ t1/3. The previous equations can be easily integrated to find the function b(Ψ) as b(Ψ) ∝ −Ψ−1/2 for Ct ≪ 1 and
b(Ψ) ∝ −Ψ−1 for Ct ≫ 1. By choosing a function b(Ψ) with these asymptotic limits one can approximately reproduce
the expansion history of a Λ-dark matter universe.

a!t"

Ψ
"
!t"

#b!t"

0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0
0.01

0.1

1

10

100

t

FIG. 1. Plot of the scale factor a(t) (solid line), the time derivative of field Ψ̇(t) (dashed line) and the function −b(t) (dotted
line) as functions of time t (in suitable units) for the parameter choice C = c2 = c3 = a⋆ = 1. This choice was made for
illustration purposes only.

C. The case of minimal coupling to ℓµν

The third example of non-trivial cosmological solutions that arise in the context of mimetic Horndeski models that
we are going to present now involves promoting the auxiliary metric ℓµν to the physical metric. Say for instance,
usual matter, like baryons, are minimally coupled with ℓµν instead of the more interesting case of minimal coupling
with gµν . The gravitational part of the action of this model is Eq. (10) with Sm = 0, where the fundamental metric
variable is the metric ℓµν , which is related to the metric gµν by a mimetic disformal transformation, i.e. a disformal
transformation of the type (1) with the function B given by (9). Then we choose to minimally couple this gravitational
theory for ℓµν and Ψ with (baryon) matter fields.
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Mime/c	Horndeski	

Ø  	Some	interes0ng	aspects/mo0va0ons	are		
	
•  it	is	a	fairly	general	scalar-tensor	theory.		
						As	such	it	can	mimic	any	background		expansion	history			
	
•  it	contains	many	mime/c	gravity	models	studied	in	the	literature.	

•  it	can	provide	a	model	of	(unified)	dark	maKer	and	dark	energy.			
						It	is	a	maKer	of	fact	that	no	dark	maKer	par-cles	have	been	detected	so	far.		
	
•  it	can	provide	models	only	for	DE,	or	only	for	DM	(and	possibly	infla/on	models)	



Mime/c	Horndeski	
	
Ø  Also	some	of	the	results	of	mime0c	Horndeski	models	can	be	useful	for					
		*		extensions	of	mime/c	DM	models,	where	a	term	(☐φ)2	is	added	:	can	address		
						the	small-scale	ΛCDM	problems	if	the	sound	speed	is	extremely	small		
						(Chamseddine,	Mukhanov,	Vikman	‘14;	Capela	&	Ramazanov	2014).	
	
					No/ce	that	these	extensions	can	find	a	UV	jus/fica/on:	they	are	equivalent	to	the	
					infrared	limit	of	the	projectable	Horava-Lifshitz	gravity					
					(see	Ramazanov,	Arroja,	Celoria,	Matarrese,	Pilo	2016)	
	
					Extensions	of	mime/c	dark	maKer	models	with	higher-deriva/ves	models		
					can	support	vor/city	
					(e.g.,	Mirzagholi	&	Vikman,	2015;	Barvinsky	2014).						
	
	
	*		non-inver/ble	disformal	transforma/on	applied	to	some	(non-degenerate)	ac/ons		
					that	can	lead	to	DHOST	theories		
					(see,	e.g.,	Achour,	Langlois,	Noui,	‘16;	Takahashi	&	Kobayashi	‘17).								
							
		



Cosmological	pert.	in	Mime/c	Horndeski	

Ø  	Perturb	Mime1c	Eqs.	of	mo1on:	

Ø  	Linear	perturba1ons:	

3

plus metric signature. Greek indices denote spacetime coordinate labels and run from 0 to 3, with 0 denoting the
time coordinate. Latin indices denote three-space coordinates and run from 1 to 3. The reduced Planck mass is
MPl = 1/

p
8⇡G, where G is Newton’s constant.

II. THE MIMETIC HORNDESKI GRAVITY AND NOTATION

In this section, we briefly introduce the mimetic Horndeski gravity model that was first proposed in [18]. In this
work, we shall use this model as a unified dark matter model. Then we shall discuss linear scalar perturbations, first
studied in [21]. We will mostly follow the notation of [21].

For a very general action of mimetic gravity,

S =

Z
d4x

p�gL[gµ⌫ , @�1gµ⌫ , . . . , @�1 . . . @�pgµ⌫ ,', @�1', . . . , @�1 . . . @�q'] + Sm[gµ⌫ ,�m]

+

Z
d4x

p�g� (b(')gµ⌫@µ'@⌫'� 1) , (1)

where ' is the mimetic scalar field, � is a Lagrange multiplier field, �m is a generic matter field with action Sm which
is coupled with the metric gµ⌫ only. b(') is a potential function and the integers p, q � 2. By defining the following
quantities

Eµ⌫ =
2p�g

�(
p�gL)
�gµ⌫

, Tµ⌫ =
2p�g

�(
p�gLm)

�gµ⌫
, ⌦m =

�(
p�gLm)

��m
, where Sm[gµ⌫ ,�m] =

Z
d4x

p�gLm[gµ⌫ ,�m],(2)

where Lm is the matter Lagrangian density and Tµ⌫ denotes its energy-momentum tensor, one can write a complete
set of equations of motion as [18, 21]

b(')gµ⌫@µ'@⌫'� 1 = 0, (3)

Eµi + Tµi = (E + T )b(')@µ'@i', (4)

⌦m = 0. (5)

The first equation is known as the mimetic constraint and one sees that the time-time metric equation of motion
is redundant with respect to the previous set [21]. Furthermore, the mimetic scalar field equation of motion is also
redundant [21]. Eq. (5) implies the conservation of the energy momentum tensorrµT

µ⌫ = 0. The Lagrange multiplier
field is given by � = (E + T )/2, where E and T are the traces of Eµ⌫ and Tµ⌫ respectively. The Lagrangian L is the
Horndeski Lagrangian [19, 31] which is given by the sum of the following four terms

L0 = K (X,') , (6)

L1 = �G3 (X,')⇤', (7)

L2 = G4,X (X,')
h
(⇤')2 � (rµr⌫')

2
i
+RG4 (X,') , (8)

L3 = �1

6
G5,X (X,')

h
(⇤')3 � 3⇤' (rµr⌫')

2 + 2 (rµr⌫')
3
i
+Gµ⌫rµr⌫'G5 (X,') , (9)

where X = �1/2rµ'rµ', (rµr⌫')2 = rµr⌫'rµr⌫' and (rµr⌫')3 = rµr⌫'rµr⇢'r⌫r⇢'. The subscripts
,' and , X denote derivatives with respect to ' and X respectively. The Horndeski functions K, G3, G4, G5 of the
two variables, X and ', define a particular (mimetic) Horndeski theory.

We now turn to the study of linear scalar perturbations in this model with the matter field being described by a
fluid. All the necessary background and perturbed equations of motion can be found in Appendices A, B and C of
[21]. Here we will briefly present only the equations which we will need to use later.

We will work in the Poisson gauge, neglect vector and tensor perturbations and assume a spatially flat Friedmann-
Lemâıtre-Robertson-Walker (FLRW) background. The metric is then written as

g00 = �a2(⌧) (1 + 2�) , g0i = 0, gij = a2(⌧) (1� 2 ) �ij , (10)

where a is the FLRW scale factor that depends on the conformal time ⌧ , � denotes the generalised Newtonian
(Bardeen) potential and  the curvature perturbation. The scalar field is expanded as '(⌧,x) = '̄(⌧) + �'(⌧,x),
where '̄ denotes the background field value and �' is its perturbation. A prime denotes derivative with respect to

For	standard	(non-interac/ng)	“species”	usual	equa/ons	
(we	consider	just	radia/on	and	baryons:	NO	DM	NOR	DE	PUT	BY	HAND)	
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where

C1 = 2H0 �H
⇥
a2 (⇢̄+ p̄)

⇤
0 � 2M2

Pl

�H0 �H2
� ⇣
�̃+H

⌘

a2 (⇢̄+ p̄) + 2M2
Pl (H0 �H2)

, C2 =
�a2 (⇢̄+ p̄)0 + 2M2

Pl

�H0 �H2
� ⇣
�̃+ 3H

⌘

a2 (⇢̄+ p̄) + 2M2
Pl (H0 �H2)

,

C3 =
2a2

M2
Pl

2

4H0 �H
a2 (⇢̄+ p̄)0 � a2H (⇢̄+ p̄)� 2M2

Pl

�H0 �H2
� ⇣
�̃+ 4H

⌘

a2 (⇢̄+ p̄) + 2M2
Pl (H0 �H2)

3

5 ,

C4 = � a2

2M2
Pl

2a2 (⇢̄+ p̄)0 � 6a2H (⇢̄+ p̄)� 4M2
Pl

�H0 �H2
� ⇣
�̃+ 6H

⌘

a2 (⇢̄+ p̄) + 2M2
Pl (H0 �H2)

, C5 =
a2

M2
Pl

,

C6 =
1

2M2
Pl

�a2p̄0 + 2M2
Pl

�H0 �H2
�
�̃

a2 (⇢̄+ p̄) + 2M2
Pl (H0 �H2)

, (A4)

and �̃ is defined as in Eq. (32).
The previous equation is the generalization of Eq. (56) of [21] for a model that includes also an imperfect fluid. It

is worth noting that if the fluid is dust then this equation together with Eq. (18) imply that the evolution of � and
v is scale-invariant even if the background is not the same as in the LCDM model.

If we consider the case of the LCDM background expansion history, then �̃ = 0. In other words, the equation �̃ = 0
can be integrated twice to give

3M2
PlH2 = a2

�
⇢m0a

�3 + ⇤
�
, (A5)

where ⇢m0 and ⇤ are two integration constants (the matter (baryon plus dark matter) density today and Einstein’s
cosmological constant). If we further assume the fluid is a fluid of baryons with ⇧ = �p = p̄ = 0 and ⇢̄ = ⇢̄b0a

�3 (note
that ⇢m0 is a constant independent of ⇢̄b0) then the equation simplifies greatly as

�00 + 3H�0 +
�H2 + 2H0

�
� = 0. (A6)

The previous equation is the same evolution equation for the potential � that one finds in the LCDM model. So, for
identical initial conditions, we will find the same potential today in both models.

Appendix B: The equations of motion in perfect fluid dark energy models

In this appendix, we briefly summarize the well-known equations of motion in a fluid dark energy model coupled
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In this section, we briefly introduce the mimetic Horndeski gravity model that was first proposed in [18]. In this
work, we shall use this model as a unified dark matter model. Then we shall discuss linear scalar perturbations, first
studied in [21]. We will mostly follow the notation of [21].
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where ' is the mimetic scalar field, � is a Lagrange multiplier field, �m is a generic matter field with action Sm which
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⌦m = 0. (5)

The first equation is known as the mimetic constraint and one sees that the time-time metric equation of motion
is redundant with respect to the previous set [21]. Furthermore, the mimetic scalar field equation of motion is also
redundant [21]. Eq. (5) implies the conservation of the energy momentum tensorrµT

µ⌫ = 0. The Lagrange multiplier
field is given by � = (E + T )/2, where E and T are the traces of Eµ⌫ and Tµ⌫ respectively. The Lagrangian L is the
Horndeski Lagrangian [19, 31] which is given by the sum of the following four terms
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where X = �1/2rµ'rµ', (rµr⌫')2 = rµr⌫'rµr⌫' and (rµr⌫')3 = rµr⌫'rµr⇢'r⌫r⇢'. The subscripts
,' and , X denote derivatives with respect to ' and X respectively. The Horndeski functions K, G3, G4, G5 of the
two variables, X and ', define a particular (mimetic) Horndeski theory.

We now turn to the study of linear scalar perturbations in this model with the matter field being described by a
fluid. All the necessary background and perturbed equations of motion can be found in Appendices A, B and C of
[21]. Here we will briefly present only the equations which we will need to use later.

We will work in the Poisson gauge, neglect vector and tensor perturbations and assume a spatially flat Friedmann-
Lemâıtre-Robertson-Walker (FLRW) background. The metric is then written as

g00 = �a2(⌧) (1 + 2�) , g0i = 0, gij = a2(⌧) (1� 2 ) �ij , (10)

where a is the FLRW scale factor that depends on the conformal time ⌧ , � denotes the generalised Newtonian
(Bardeen) potential and  the curvature perturbation. The scalar field is expanded as '(⌧,x) = '̄(⌧) + �'(⌧,x),
where '̄ denotes the background field value and �' is its perturbation. A prime denotes derivative with respect to
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,' and , X denote derivatives with respect to ' and X respectively. The Horndeski functions K, G3, G4, G5 of the
two variables, X and ', define a particular (mimetic) Horndeski theory.

We now turn to the study of linear scalar perturbations in this model with the matter field being described by a
fluid. All the necessary background and perturbed equations of motion can be found in Appendices A, B and C of
[21]. Here we will briefly present only the equations which we will need to use later.

We will work in the Poisson gauge, neglect vector and tensor perturbations and assume a spatially flat Friedmann-
Lemâıtre-Robertson-Walker (FLRW) background. The metric is then written as

g00 = �a2(⌧) (1 + 2�) , g0i = 0, gij = a2(⌧) (1� 2 ) �ij , (10)

where a is the FLRW scale factor that depends on the conformal time ⌧ , � denotes the generalised Newtonian
(Bardeen) potential and  the curvature perturbation. The scalar field is expanded as '(⌧,x) = '̄(⌧) + �'(⌧,x),
where '̄ denotes the background field value and �' is its perturbation. A prime denotes derivative with respect to
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conformal time. In this work, a bar over a quantity denotes the background value. We chose this notation, di↵erent
from that in [21], because here we want to use the subscript 0 to denote a quantity at the present day.

The fluid has an energy-momentum tensor of the form

Tµ⌫ = (⇢+ p)uµu⌫ + pgµ⌫ + ⇡µ⌫ , (11)

where ⇢ is the energy density, p the pressure and ⇡µ⌫ is the anisotropic stress tensor which vanishes for perfect fluids.
The four-velocity, uµ, is a time-like vector and obeys the constraint uµu

µ = �1. It can be used to find

u0 = a�1(1� �), ui = a�1vi, (12)

where the velocity vi, is a first-order quantity, and can be written in terms of a scalar quantity, v, as vi = �ij@jv
(because we neglect intrinsic vector perturbations). Similarly, the anisotropic stress tensor can be described by a
scalar, denoted by ⇧ (see [21] for all the details). Then the background equations are simply

� a�2b('̄)('̄0)2 = 1, Ēij = �a2p̄�ij , ⇢̄0 + 3H(⇢̄+ p̄) = 0, (13)

with the definition H ⌘ a0/a. At first order, the set of independent equations is

2b̄�'0 + '̄0b̄,'�'� 2b̄'̄0� = 0, (14)

f7 + f8�'+ f9�+ a2⇧ = 0, (15)
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@2⇧+ 4H(⇢̄+ p̄)v + (⇢̄+ p̄)� = 0, (18)

where the fi functions are complicated functions of K, G3, G4, G5 and their derivatives. The long expressions for fi
together with useful identities that these functions obey can be found in Appendix B of [21]. In Appendix A, using
the previous equations, we derive a second order evolution equation for �. This generalizes results present in [21]
to include the coupling to a fluid. The last two equations in the set are a direct consequence of the conservation
of the energy-momentum tensor and thus are valid independently of the theory of gravity. For the case of multiple
non-interacting fluids, these equations are valid with the definitions ⇢̄ ⌘ P

f ⇢̄f, �⇢ ⌘ P
f �⇢f, where the subscript

f denotes the di↵erent fluids, and equally for the pressure. (⇢̄ + p̄)v ⌘ P
f(⇢̄f + p̄f)vf. Furthermore, in this case,

these last two equations are also valid for each individual fluid. In the standard model of cosmology there are several
particles that are important for the evolution of the universe and here we will follow a hydrodynamical approach,
namely approximate them as perfect fluids. The label that specifies the fluid type, f, takes the following values: � for
photons, ⌫ for massless neutrinos (and anti-neutrinos), r for radiation (sum of the photons and the neutrinos), b for
baryons, CDM for cold dark matter, m for matter (sum of the baryon and the CDM) and PFDE for perfect fluid
dark energy. Perfect fluids have ⇧f = 0 (note however that these assumptions are not always accurate for photons
and free-streaming neutrinos). Radiation has wr = 1/3, matter has wm = 0 and in our numerical code we allow the
equation of state (EOS) of the DE to be time dependent following the so-called Chevallier-Polarski-Linder (CPL)
parametrization as w(a) = w0 + wa(1� a) [32, 33].

The EOS for the fluid f is wf ⌘ p̄/⇢̄. At the linear level, the pressure can be written as (see e.g. [34, 35])

�pf = c2(f)a�⇢f +
⇣
c2(f)s � c2(f)a

⌘ �
�⇢f + ⇢̄0fvf

�
, (19)

where the adiabatic sound speed is defined as c2(f)a ⌘ p̄0f/⇢̄
0

f and it is c2(f)a = wf if wf is a constant, and the sound speed
is denoted as c(f)s, which is a new parameter independent of c(f)a. For all these fluids we take c(f)s = c(f)a except for
the DE fluid.

We define the density contrast as �f ⌘ �⇢f/⇢̄f. The energy density parameter is defined as usual

⌦f =
⇢̄f

3H2M2
Pl

, (20)

where H ⌘ ȧ/a, the dot denotes derivative with respect to cosmic time t. We define a rescaled velocity as ṽf = Hvf.

5

We define the Fourier transform of some quantity Q(⌧,x) as Q(⌧,x) = 1/(2⇡)3
R
d3kQ(⌧,k)eik·x, the inverse

is Q(⌧,k) =
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d3xQ(⌧,x)e�ik·x and an operator, like for instance the comoving curvature perturbation R̂, is ex-

panded as R̂(⌧,k) = R(⌧,k)a(k) +R⇤(⌧,�k)a†(�k), where the annihilation and creation operators are normalized
as
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In this work we are mainly interested in computing the predictions for the power spectrum of � in mimetic models.
� is well-known to be gauge invariant and can be directly related to gravitational lensing observables for example.
It can also be related with observables in LSS surveys, like for instance the power spectrum of galaxies, by using a
suitable bias model. A systematic derivation of bias in clustering dark energy and mimetic models is still an open
question and is currently under investigation.

The primordial power spectrum of the comoving curvature perturbation, �2
R

(k), is
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where ⌧k is the horizon crossing time (after horizon exit R becomes constant in single-field slow-roll inflation) for the
wavemode k and it is related with the two-point correlation function as

hR̂2(x)i =
Z

dk

k
�2

R

(k). (23)

III. EQUIVALENT PREDICTIONS

In this section, we will compare the mimetic Horndeski gravity, as a model of unified dark matter, with perfect
fluid models for the dark universe. The equations of motion for these latter models can be found in Appendix B.

As we have seen in the previous section, the relevant equations in the mimetic Horndeski model are Eqs. (14)-(18).
It turns out that by defining a scalar field velocity

v' ⌘ ��'

'̄0

, (24)

one can write Eq. (14) in a very suggestive way as

v0' +Hv' + � = 0. (25)

Comparing this equation with Eq. (B2) one can see that they are equal if c(f)s = ⇧f = 0, that is, the previous equation
is the equation for the velocity of dust (recall that we neglect vector and tensor perturbations).

After a few manipulations, in particular using the mimetic constraint, the background equations and the previously
mentioned identities for the fi functions, Eq. (16) can be written as
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f10
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◆
v' � a2

f10
(⇢̄+ p̄) v = 0. (26)

The previous three equations together with Eq. (15) form a closed system. Since we are interested in introducing
some additional matter fields, in particular radiation and baryons, we need to add to the system of equations their
equations of motion given by Eqs. (B1) and (B2). It is important to note that we want to use these mimetic models
as unified dark matter models so in this section f denotes radiation (photons plus massless neutrinos) and baryons
only. We do not introduce CDM or DE by hand. The previous three equations are simple and can be used to solve
for �,  and vf for a general mimetic Horndeski model once we specify the Horndeski functions.

In the rest of the paper, for simplicity, we will consider less general models as

G4 =
M2

Pl

2
, G5 = 0, (27)

while the functions b, K and G3 are still kept general. This choice switches o↵ the non-minimal coupling in the
Horndeski Lagrangian. We call these models mimetic cubic Horndeski. They are still very general, and include

mime/c	constraint	 Traceless	i-j	eqn.	and	0-i	

	
*	here	fi	func/ons	are	a	combina/on	of	the	K,	G3,G4,	G5	and	their	deriva/ves	
	

4

conformal time. In this work, a bar over a quantity denotes the background value. We chose this notation, di↵erent
from that in [21], because here we want to use the subscript 0 to denote a quantity at the present day.

The fluid has an energy-momentum tensor of the form

Tµ⌫ = (⇢+ p)uµu⌫ + pgµ⌫ + ⇡µ⌫ , (11)

where ⇢ is the energy density, p the pressure and ⇡µ⌫ is the anisotropic stress tensor which vanishes for perfect fluids.
The four-velocity, uµ, is a time-like vector and obeys the constraint uµu

µ = �1. It can be used to find

u0 = a�1(1� �), ui = a�1vi, (12)

where the velocity vi, is a first-order quantity, and can be written in terms of a scalar quantity, v, as vi = �ij@jv
(because we neglect intrinsic vector perturbations). Similarly, the anisotropic stress tensor can be described by a
scalar, denoted by ⇧ (see [21] for all the details). Then the background equations are simply

� a�2b('̄)('̄0)2 = 1, Ēij = �a2p̄�ij , ⇢̄0 + 3H(⇢̄+ p̄) = 0, (13)

with the definition H ⌘ a0/a. At first order, the set of independent equations is

2b̄�'0 + '̄0b̄,'�'� 2b̄'̄0� = 0, (14)

f7 + f8�'+ f9�+ a2⇧ = 0, (15)
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�⇢0 + 3H(�⇢+ �p)� 3(⇢̄+ p̄) 0 + (⇢̄+ p̄)@2v = 0, (17)

((⇢̄+ p̄)v)0 + �p+
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3
@2⇧+ 4H(⇢̄+ p̄)v + (⇢̄+ p̄)� = 0, (18)

where the fi functions are complicated functions of K, G3, G4, G5 and their derivatives. The long expressions for fi
together with useful identities that these functions obey can be found in Appendix B of [21]. In Appendix A, using
the previous equations, we derive a second order evolution equation for �. This generalizes results present in [21]
to include the coupling to a fluid. The last two equations in the set are a direct consequence of the conservation
of the energy-momentum tensor and thus are valid independently of the theory of gravity. For the case of multiple
non-interacting fluids, these equations are valid with the definitions ⇢̄ ⌘ P

f ⇢̄f, �⇢ ⌘ P
f �⇢f, where the subscript

f denotes the di↵erent fluids, and equally for the pressure. (⇢̄ + p̄)v ⌘ P
f(⇢̄f + p̄f)vf. Furthermore, in this case,

these last two equations are also valid for each individual fluid. In the standard model of cosmology there are several
particles that are important for the evolution of the universe and here we will follow a hydrodynamical approach,
namely approximate them as perfect fluids. The label that specifies the fluid type, f, takes the following values: � for
photons, ⌫ for massless neutrinos (and anti-neutrinos), r for radiation (sum of the photons and the neutrinos), b for
baryons, CDM for cold dark matter, m for matter (sum of the baryon and the CDM) and PFDE for perfect fluid
dark energy. Perfect fluids have ⇧f = 0 (note however that these assumptions are not always accurate for photons
and free-streaming neutrinos). Radiation has wr = 1/3, matter has wm = 0 and in our numerical code we allow the
equation of state (EOS) of the DE to be time dependent following the so-called Chevallier-Polarski-Linder (CPL)
parametrization as w(a) = w0 + wa(1� a) [32, 33].

The EOS for the fluid f is wf ⌘ p̄/⇢̄. At the linear level, the pressure can be written as (see e.g. [34, 35])

�pf = c2(f)a�⇢f +
⇣
c2(f)s � c2(f)a
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where the adiabatic sound speed is defined as c2(f)a ⌘ p̄0f/⇢̄
0

f and it is c2(f)a = wf if wf is a constant, and the sound speed
is denoted as c(f)s, which is a new parameter independent of c(f)a. For all these fluids we take c(f)s = c(f)a except for
the DE fluid.

We define the density contrast as �f ⌘ �⇢f/⇢̄f. The energy density parameter is defined as usual

⌦f =
⇢̄f
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, (20)

where H ⌘ ȧ/a, the dot denotes derivative with respect to cosmic time t. We define a rescaled velocity as ṽf = Hvf.
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conformal time. In this work, a bar over a quantity denotes the background value. We chose this notation, di↵erent
from that in [21], because here we want to use the subscript 0 to denote a quantity at the present day.

The fluid has an energy-momentum tensor of the form

Tµ⌫ = (⇢+ p)uµu⌫ + pgµ⌫ + ⇡µ⌫ , (11)

where ⇢ is the energy density, p the pressure and ⇡µ⌫ is the anisotropic stress tensor which vanishes for perfect fluids.
The four-velocity, uµ, is a time-like vector and obeys the constraint uµu

µ = �1. It can be used to find

u0 = a�1(1� �), ui = a�1vi, (12)

where the velocity vi, is a first-order quantity, and can be written in terms of a scalar quantity, v, as vi = �ij@jv
(because we neglect intrinsic vector perturbations). Similarly, the anisotropic stress tensor can be described by a
scalar, denoted by ⇧ (see [21] for all the details). Then the background equations are simply

� a�2b('̄)('̄0)2 = 1, Ēij = �a2p̄�ij , ⇢̄0 + 3H(⇢̄+ p̄) = 0, (13)

with the definition H ⌘ a0/a. At first order, the set of independent equations is

2b̄�'0 + '̄0b̄,'�'� 2b̄'̄0� = 0, (14)

f7 + f8�'+ f9�+ a2⇧ = 0, (15)
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@2⇧+ 4H(⇢̄+ p̄)v + (⇢̄+ p̄)� = 0, (18)

where the fi functions are complicated functions of K, G3, G4, G5 and their derivatives. The long expressions for fi
together with useful identities that these functions obey can be found in Appendix B of [21]. In Appendix A, using
the previous equations, we derive a second order evolution equation for �. This generalizes results present in [21]
to include the coupling to a fluid. The last two equations in the set are a direct consequence of the conservation
of the energy-momentum tensor and thus are valid independently of the theory of gravity. For the case of multiple
non-interacting fluids, these equations are valid with the definitions ⇢̄ ⌘ P

f ⇢̄f, �⇢ ⌘ P
f �⇢f, where the subscript

f denotes the di↵erent fluids, and equally for the pressure. (⇢̄ + p̄)v ⌘ P
f(⇢̄f + p̄f)vf. Furthermore, in this case,

these last two equations are also valid for each individual fluid. In the standard model of cosmology there are several
particles that are important for the evolution of the universe and here we will follow a hydrodynamical approach,
namely approximate them as perfect fluids. The label that specifies the fluid type, f, takes the following values: � for
photons, ⌫ for massless neutrinos (and anti-neutrinos), r for radiation (sum of the photons and the neutrinos), b for
baryons, CDM for cold dark matter, m for matter (sum of the baryon and the CDM) and PFDE for perfect fluid
dark energy. Perfect fluids have ⇧f = 0 (note however that these assumptions are not always accurate for photons
and free-streaming neutrinos). Radiation has wr = 1/3, matter has wm = 0 and in our numerical code we allow the
equation of state (EOS) of the DE to be time dependent following the so-called Chevallier-Polarski-Linder (CPL)
parametrization as w(a) = w0 + wa(1� a) [32, 33].

The EOS for the fluid f is wf ⌘ p̄/⇢̄. At the linear level, the pressure can be written as (see e.g. [34, 35])

�pf = c2(f)a�⇢f +
⇣
c2(f)s � c2(f)a
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�⇢f + ⇢̄0fvf
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where the adiabatic sound speed is defined as c2(f)a ⌘ p̄0f/⇢̄
0

f and it is c2(f)a = wf if wf is a constant, and the sound speed
is denoted as c(f)s, which is a new parameter independent of c(f)a. For all these fluids we take c(f)s = c(f)a except for
the DE fluid.

We define the density contrast as �f ⌘ �⇢f/⇢̄f. The energy density parameter is defined as usual

⌦f =
⇢̄f
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where H ⌘ ȧ/a, the dot denotes derivative with respect to cosmic time t. We define a rescaled velocity as ṽf = Hvf.
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We define the Fourier transform of some quantity Q(⌧,x) as Q(⌧,x) = 1/(2⇡)3
R
d3kQ(⌧,k)eik·x, the inverse

is Q(⌧,k) =
R
d3xQ(⌧,x)e�ik·x and an operator, like for instance the comoving curvature perturbation R̂, is ex-

panded as R̂(⌧,k) = R(⌧,k)a(k) +R⇤(⌧,�k)a†(�k), where the annihilation and creation operators are normalized
as
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). The power spectrum of � is defined as
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In this work we are mainly interested in computing the predictions for the power spectrum of � in mimetic models.
� is well-known to be gauge invariant and can be directly related to gravitational lensing observables for example.
It can also be related with observables in LSS surveys, like for instance the power spectrum of galaxies, by using a
suitable bias model. A systematic derivation of bias in clustering dark energy and mimetic models is still an open
question and is currently under investigation.

The primordial power spectrum of the comoving curvature perturbation, �2
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(k), is
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where ⌧k is the horizon crossing time (after horizon exit R becomes constant in single-field slow-roll inflation) for the
wavemode k and it is related with the two-point correlation function as

hR̂2(x)i =
Z

dk

k
�2

R

(k). (23)

III. EQUIVALENT PREDICTIONS

In this section, we will compare the mimetic Horndeski gravity, as a model of unified dark matter, with perfect
fluid models for the dark universe. The equations of motion for these latter models can be found in Appendix B.

As we have seen in the previous section, the relevant equations in the mimetic Horndeski model are Eqs. (14)-(18).
It turns out that by defining a scalar field velocity

v' ⌘ ��'
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, (24)

one can write Eq. (14) in a very suggestive way as

v0' +Hv' + � = 0. (25)

Comparing this equation with Eq. (B2) one can see that they are equal if c(f)s = ⇧f = 0, that is, the previous equation
is the equation for the velocity of dust (recall that we neglect vector and tensor perturbations).

After a few manipulations, in particular using the mimetic constraint, the background equations and the previously
mentioned identities for the fi functions, Eq. (16) can be written as
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The previous three equations together with Eq. (15) form a closed system. Since we are interested in introducing
some additional matter fields, in particular radiation and baryons, we need to add to the system of equations their
equations of motion given by Eqs. (B1) and (B2). It is important to note that we want to use these mimetic models
as unified dark matter models so in this section f denotes radiation (photons plus massless neutrinos) and baryons
only. We do not introduce CDM or DE by hand. The previous three equations are simple and can be used to solve
for �,  and vf for a general mimetic Horndeski model once we specify the Horndeski functions.

In the rest of the paper, for simplicity, we will consider less general models as

G4 =
M2

Pl

2
, G5 = 0, (27)

while the functions b, K and G3 are still kept general. This choice switches o↵ the non-minimal coupling in the
Horndeski Lagrangian. We call these models mimetic cubic Horndeski. They are still very general, and include
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We define the Fourier transform of some quantity Q(⌧,x) as Q(⌧,x) = 1/(2⇡)3
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In this work we are mainly interested in computing the predictions for the power spectrum of � in mimetic models.
� is well-known to be gauge invariant and can be directly related to gravitational lensing observables for example.
It can also be related with observables in LSS surveys, like for instance the power spectrum of galaxies, by using a
suitable bias model. A systematic derivation of bias in clustering dark energy and mimetic models is still an open
question and is currently under investigation.

The primordial power spectrum of the comoving curvature perturbation, �2
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where ⌧k is the horizon crossing time (after horizon exit R becomes constant in single-field slow-roll inflation) for the
wavemode k and it is related with the two-point correlation function as
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III. EQUIVALENT PREDICTIONS

In this section, we will compare the mimetic Horndeski gravity, as a model of unified dark matter, with perfect
fluid models for the dark universe. The equations of motion for these latter models can be found in Appendix B.

As we have seen in the previous section, the relevant equations in the mimetic Horndeski model are Eqs. (14)-(18).
It turns out that by defining a scalar field velocity

v' ⌘ ��'

'̄0

, (24)

one can write Eq. (14) in a very suggestive way as

v0' +Hv' + � = 0. (25)

Comparing this equation with Eq. (B2) one can see that they are equal if c(f)s = ⇧f = 0, that is, the previous equation
is the equation for the velocity of dust (recall that we neglect vector and tensor perturbations).

After a few manipulations, in particular using the mimetic constraint, the background equations and the previously
mentioned identities for the fi functions, Eq. (16) can be written as
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The previous three equations together with Eq. (15) form a closed system. Since we are interested in introducing
some additional matter fields, in particular radiation and baryons, we need to add to the system of equations their
equations of motion given by Eqs. (B1) and (B2). It is important to note that we want to use these mimetic models
as unified dark matter models so in this section f denotes radiation (photons plus massless neutrinos) and baryons
only. We do not introduce CDM or DE by hand. The previous three equations are simple and can be used to solve
for �,  and vf for a general mimetic Horndeski model once we specify the Horndeski functions.

In the rest of the paper, for simplicity, we will consider less general models as

G4 =
M2

Pl

2
, G5 = 0, (27)

while the functions b, K and G3 are still kept general. This choice switches o↵ the non-minimal coupling in the
Horndeski Lagrangian. We call these models mimetic cubic Horndeski. They are still very general, and include
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and �̃ is defined as in Eq. (32).
The previous equation is the generalization of Eq. (56) of [21] for a model that includes also an imperfect fluid. It

is worth noting that if the fluid is dust then this equation together with Eq. (18) imply that the evolution of � and
v is scale-invariant even if the background is not the same as in the LCDM model.

If we consider the case of the LCDM background expansion history, then �̃ = 0. In other words, the equation �̃ = 0
can be integrated twice to give

3M2
PlH2 = a2

�
⇢m0a

�3 + ⇤
�
, (A5)

where ⇢m0 and ⇤ are two integration constants (the matter (baryon plus dark matter) density today and Einstein’s
cosmological constant). If we further assume the fluid is a fluid of baryons with ⇧ = �p = p̄ = 0 and ⇢̄ = ⇢̄b0a

�3 (note
that ⇢m0 is a constant independent of ⇢̄b0) then the equation simplifies greatly as

�00 + 3H�0 +
�H2 + 2H0

�
� = 0. (A6)

The previous equation is the same evolution equation for the potential � that one finds in the LCDM model. So, for
identical initial conditions, we will find the same potential today in both models.

Appendix B: The equations of motion in perfect fluid dark energy models

In this appendix, we briefly summarize the well-known equations of motion in a fluid dark energy model coupled
with GR. Perfect fluids have ⇧f = 0 but here we keep ⇧ in the equations for generality. The conservation of the
energy-momentum tensors, assuming the di↵erent matter species do not exchange energy, give
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The following two equations close the system,

M2
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(⇢̄f + p̄f) vf. (B4)

The first and second equations come from the ij and 0i parts of the Einstein equations, respectively. Note that we do
not need to use the other ij equation. The 00 equation, known as the Poisson equation, is a constraint and reads

2M2
Pl@

2 = a2
X

f

⇢̄f (�f � 3(1 + wf)vf) . (B5)

VS	

the	same	as	a	perfect	fluid	with	zero	sound	speed.	This	is	a	first	indica1on	that		
in	mime1c	models	scalar	perturba1ons	have	zero	sound	speed.	
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We define the Fourier transform of some quantity Q(⌧,x) as Q(⌧,x) = 1/(2⇡)3
R
d3kQ(⌧,k)eik·x, the inverse

is Q(⌧,k) =
R
d3xQ(⌧,x)e�ik·x and an operator, like for instance the comoving curvature perturbation R̂, is ex-

panded as R̂(⌧,k) = R(⌧,k)a(k) +R⇤(⌧,�k)a†(�k), where the annihilation and creation operators are normalized
as
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). The power spectrum of � is defined as

P�(⌧, k) =
2k3

(2⇡)2
|�(⌧, k)|2. (21)

In this work we are mainly interested in computing the predictions for the power spectrum of � in mimetic models.
� is well-known to be gauge invariant and can be directly related to gravitational lensing observables for example.
It can also be related with observables in LSS surveys, like for instance the power spectrum of galaxies, by using a
suitable bias model. A systematic derivation of bias in clustering dark energy and mimetic models is still an open
question and is currently under investigation.

The primordial power spectrum of the comoving curvature perturbation, �2
R

(k), is

�2
R

(k) =
2k3

(2⇡)2
|R(⌧k, k)|2 = �2

R

(k0)

✓
k
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, (22)

where ⌧k is the horizon crossing time (after horizon exit R becomes constant in single-field slow-roll inflation) for the
wavemode k and it is related with the two-point correlation function as

hR̂2(x)i =
Z

dk

k
�2

R

(k). (23)

III. EQUIVALENT PREDICTIONS

In this section, we will compare the mimetic Horndeski gravity, as a model of unified dark matter, with perfect
fluid models for the dark universe. The equations of motion for these latter models can be found in Appendix B.

As we have seen in the previous section, the relevant equations in the mimetic Horndeski model are Eqs. (14)-(18).
It turns out that by defining a scalar field velocity

v' ⌘ ��'

'̄0

, (24)

one can write Eq. (14) in a very suggestive way as

v0' +Hv' + � = 0. (25)

Comparing this equation with Eq. (B2) one can see that they are equal if c(f)s = ⇧f = 0, that is, the previous equation
is the equation for the velocity of dust (recall that we neglect vector and tensor perturbations).

After a few manipulations, in particular using the mimetic constraint, the background equations and the previously
mentioned identities for the fi functions, Eq. (16) can be written as

 0 +H�+

✓
a2 (⇢̄+ p̄)

f10
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f10
(⇢̄+ p̄) v = 0. (26)

The previous three equations together with Eq. (15) form a closed system. Since we are interested in introducing
some additional matter fields, in particular radiation and baryons, we need to add to the system of equations their
equations of motion given by Eqs. (B1) and (B2). It is important to note that we want to use these mimetic models
as unified dark matter models so in this section f denotes radiation (photons plus massless neutrinos) and baryons
only. We do not introduce CDM or DE by hand. The previous three equations are simple and can be used to solve
for �,  and vf for a general mimetic Horndeski model once we specify the Horndeski functions.

In the rest of the paper, for simplicity, we will consider less general models as

G4 =
M2

Pl

2
, G5 = 0, (27)

while the functions b, K and G3 are still kept general. This choice switches o↵ the non-minimal coupling in the
Horndeski Lagrangian. We call these models mimetic cubic Horndeski. They are still very general, and include
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In this work we are mainly interested in computing the predictions for the power spectrum of � in mimetic models.
� is well-known to be gauge invariant and can be directly related to gravitational lensing observables for example.
It can also be related with observables in LSS surveys, like for instance the power spectrum of galaxies, by using a
suitable bias model. A systematic derivation of bias in clustering dark energy and mimetic models is still an open
question and is currently under investigation.

The primordial power spectrum of the comoving curvature perturbation, �2
R
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where ⌧k is the horizon crossing time (after horizon exit R becomes constant in single-field slow-roll inflation) for the
wavemode k and it is related with the two-point correlation function as

hR̂2(x)i =
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dk
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III. EQUIVALENT PREDICTIONS

In this section, we will compare the mimetic Horndeski gravity, as a model of unified dark matter, with perfect
fluid models for the dark universe. The equations of motion for these latter models can be found in Appendix B.

As we have seen in the previous section, the relevant equations in the mimetic Horndeski model are Eqs. (14)-(18).
It turns out that by defining a scalar field velocity

v' ⌘ ��'

'̄0

, (24)

one can write Eq. (14) in a very suggestive way as

v0' +Hv' + � = 0. (25)

Comparing this equation with Eq. (B2) one can see that they are equal if c(f)s = ⇧f = 0, that is, the previous equation
is the equation for the velocity of dust (recall that we neglect vector and tensor perturbations).

After a few manipulations, in particular using the mimetic constraint, the background equations and the previously
mentioned identities for the fi functions, Eq. (16) can be written as
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The previous three equations together with Eq. (15) form a closed system. Since we are interested in introducing
some additional matter fields, in particular radiation and baryons, we need to add to the system of equations their
equations of motion given by Eqs. (B1) and (B2). It is important to note that we want to use these mimetic models
as unified dark matter models so in this section f denotes radiation (photons plus massless neutrinos) and baryons
only. We do not introduce CDM or DE by hand. The previous three equations are simple and can be used to solve
for �,  and vf for a general mimetic Horndeski model once we specify the Horndeski functions.

In the rest of the paper, for simplicity, we will consider less general models as

G4 =
M2

Pl

2
, G5 = 0, (27)

while the functions b, K and G3 are still kept general. This choice switches o↵ the non-minimal coupling in the
Horndeski Lagrangian. We call these models mimetic cubic Horndeski. They are still very general, and include

while	b(ϕ),	K	and	G3	are	general.				

Ø  These	models	include	the	original	mime/c	dark	maKer	models	of		
						Chamseddine	and	Mukhanov,	14+,	and	of	Lim,	Sawicki	and	Vikman	‘10.	
						They	include	the	cubic	Galileon		mime/c	model	explained	before		
	
Ø  	At	the	background	level	they	can	mimic	any	desired	expansion	history		

Ø  	At	the	(linear)	perturba/on	level		
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the original models in [14–16] which were shown to essentially allow for any desired background expansion history.
Furthermore, they also include the mimetic cubic Galileon which can, for instance, reproduce the expansion history
of the LCDM model by a suitable choice of b(') [18]. In this case, f8 = 0 and f7 = �M2

Pl = �f9 = f10/2. This
implies that there is no e↵ective anisotropic stress, i.e. � =  (because we assume ⇧f = 0 for all matter species in
this paper) and the coupling with gravity is the standard one. Eq. (26) then becomes

�0 +H�+
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P
f=r,b(⇢̄f + p̄f)

2M2
Pl

+H2 �H0

!
v' +

a2

2M2
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X

f=r,b

(⇢̄f + p̄f)vf = 0. (28)

We can see that this mimetic model e↵ectively introduces a fluid which clusters on all scales (i.e. cs = 0). In order
to find the solution for the Newtonian (Bardeen) potential � one only needs to specify one function, the background
expansion rate H. H can be found by solving the background equations of motion once the functions b, K and G3

are specified. However, here we follow a di↵erent approach. We assume that a solution for the inverse problem exists,
that is, we assume that suitable choices for those functions exist such that we can have for example the background
expansion history of a CDM plus perfect fluid DE model in GR (hereafter called PFDE). Given the freedom that
these models allow for the background history, for future work, it would be interesting to reconstruct the background
from observations and then use that background in Eq. (28) to find the prediction for the potential �. At the same
time, it would also be interesting to solve the inverse problem to find the constraints that the free functions b, K and
G3 should obey.

The background expansion of a PFDE model is given by

2M2
Pl(H2 �H0) = a2

X

f=r,m,DE

(⇢̄f + p̄f), (29)

where here r = � + ⌫ and m = b+ CDM . Plugging this equation in Eq. (28) we get
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2

4(⇢̄CDM + p̄CDM )v' + (⇢̄DE + p̄DE)v' +
X

f=r,b

(⇢̄f + p̄f)vf

3

5 = 0. (30)

Recalling that v' behaves as a dust velocity following Eq. (25), one can compare this equation with the second
equation in (B3) to find that they are equal if vDE in (B3) behaves as a dust velocity. That is guaranteed to be the
case if cs ⌘ c(DE)s = 0 by using Eq. (B2) (and if ⇧DE = 0, i.e. for PFDE). This shows that for the simpler models
defined in Eq. (27), if all matter species have ⇧ = 0 and if the background expansion is identical to the background
expansion of a perfect fluid DE in Einstein’s gravity with any EOS, then the mimetic models predict exactly the same
solution for � (which is equal to  ) as in the perfect fluid DE model with cs = 0. This result also implies that the
mimetic model with the LCDM background history also gives the same prediction for � as the LCDM model. This
is the main result of this section and one of the main results of this paper.

The previous equivalence argument assumes adiabatic initial conditions. One important di↵erence arises in the
presence of non-adiabatic initial conditions. The perfect fluid DE model with cs = 0 can support non-adiabatic
initial conditions between the CDM and DE velocities while in the mimetic model this situation cannot be realized.
This could in principle be used to distinguish these otherwise equivalent models at the level of linear perturbations
(assuming the mimetic model has the background of a perfect fluid DE model).

If one is interested in the late time universe, well after the time when radiation became negligible, then one can
combine Eqs. (25) and (30), assuming initial conditions such that v' = vb, to find

�00 + �0

⇣
3H+ �̃

⌘
+ �

⇣
H2 + 2H0 + �̃H

⌘
= 0, (31)

where �̃ is defined as

�̃ ⌘ �H00 +HH0 +H3

H0 �H2
. (32)

In the LCDM model and at the late time, �̃ = 0, as shown in Appendix A. The previous equation can be solved
analytically [16] (see also [21]) and one finds

�2 / 1� H

a

Z
da

H
, (33)

for the growing mode (same form of solution as Eq. (C6)) and �1 / H/a, for the decaying mode.
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In this work we are mainly interested in computing the predictions for the power spectrum of � in mimetic models.
� is well-known to be gauge invariant and can be directly related to gravitational lensing observables for example.
It can also be related with observables in LSS surveys, like for instance the power spectrum of galaxies, by using a
suitable bias model. A systematic derivation of bias in clustering dark energy and mimetic models is still an open
question and is currently under investigation.

The primordial power spectrum of the comoving curvature perturbation, �2
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(k), is
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where ⌧k is the horizon crossing time (after horizon exit R becomes constant in single-field slow-roll inflation) for the
wavemode k and it is related with the two-point correlation function as

hR̂2(x)i =
Z

dk

k
�2

R

(k). (23)

III. EQUIVALENT PREDICTIONS

In this section, we will compare the mimetic Horndeski gravity, as a model of unified dark matter, with perfect
fluid models for the dark universe. The equations of motion for these latter models can be found in Appendix B.

As we have seen in the previous section, the relevant equations in the mimetic Horndeski model are Eqs. (14)-(18).
It turns out that by defining a scalar field velocity

v' ⌘ ��'

'̄0

, (24)

one can write Eq. (14) in a very suggestive way as

v0' +Hv' + � = 0. (25)

Comparing this equation with Eq. (B2) one can see that they are equal if c(f)s = ⇧f = 0, that is, the previous equation
is the equation for the velocity of dust (recall that we neglect vector and tensor perturbations).

After a few manipulations, in particular using the mimetic constraint, the background equations and the previously
mentioned identities for the fi functions, Eq. (16) can be written as
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(⇢̄+ p̄) v = 0. (26)

The previous three equations together with Eq. (15) form a closed system. Since we are interested in introducing
some additional matter fields, in particular radiation and baryons, we need to add to the system of equations their
equations of motion given by Eqs. (B1) and (B2). It is important to note that we want to use these mimetic models
as unified dark matter models so in this section f denotes radiation (photons plus massless neutrinos) and baryons
only. We do not introduce CDM or DE by hand. The previous three equations are simple and can be used to solve
for �,  and vf for a general mimetic Horndeski model once we specify the Horndeski functions.

In the rest of the paper, for simplicity, we will consider less general models as

G4 =
M2

Pl

2
, G5 = 0, (27)

while the functions b, K and G3 are still kept general. This choice switches o↵ the non-minimal coupling in the
Horndeski Lagrangian. We call these models mimetic cubic Horndeski. They are still very general, and include
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the original models in [14–16] which were shown to essentially allow for any desired background expansion history.
Furthermore, they also include the mimetic cubic Galileon which can, for instance, reproduce the expansion history
of the LCDM model by a suitable choice of b(') [18]. In this case, f8 = 0 and f7 = �M2

Pl = �f9 = f10/2. This
implies that there is no e↵ective anisotropic stress, i.e. � =  (because we assume ⇧f = 0 for all matter species in
this paper) and the coupling with gravity is the standard one. Eq. (26) then becomes
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We can see that this mimetic model e↵ectively introduces a fluid which clusters on all scales (i.e. cs = 0). In order
to find the solution for the Newtonian (Bardeen) potential � one only needs to specify one function, the background
expansion rate H. H can be found by solving the background equations of motion once the functions b, K and G3

are specified. However, here we follow a di↵erent approach. We assume that a solution for the inverse problem exists,
that is, we assume that suitable choices for those functions exist such that we can have for example the background
expansion history of a CDM plus perfect fluid DE model in GR (hereafter called PFDE). Given the freedom that
these models allow for the background history, for future work, it would be interesting to reconstruct the background
from observations and then use that background in Eq. (28) to find the prediction for the potential �. At the same
time, it would also be interesting to solve the inverse problem to find the constraints that the free functions b, K and
G3 should obey.

The background expansion of a PFDE model is given by

2M2
Pl(H2 �H0) = a2
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(⇢̄f + p̄f), (29)

where here r = � + ⌫ and m = b+ CDM . Plugging this equation in Eq. (28) we get
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3
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Recalling that v' behaves as a dust velocity following Eq. (25), one can compare this equation with the second
equation in (B3) to find that they are equal if vDE in (B3) behaves as a dust velocity. That is guaranteed to be the
case if cs ⌘ c(DE)s = 0 by using Eq. (B2) (and if ⇧DE = 0, i.e. for PFDE). This shows that for the simpler models
defined in Eq. (27), if all matter species have ⇧ = 0 and if the background expansion is identical to the background
expansion of a perfect fluid DE in Einstein’s gravity with any EOS, then the mimetic models predict exactly the same
solution for � (which is equal to  ) as in the perfect fluid DE model with cs = 0. This result also implies that the
mimetic model with the LCDM background history also gives the same prediction for � as the LCDM model. This
is the main result of this section and one of the main results of this paper.

The previous equivalence argument assumes adiabatic initial conditions. One important di↵erence arises in the
presence of non-adiabatic initial conditions. The perfect fluid DE model with cs = 0 can support non-adiabatic
initial conditions between the CDM and DE velocities while in the mimetic model this situation cannot be realized.
This could in principle be used to distinguish these otherwise equivalent models at the level of linear perturbations
(assuming the mimetic model has the background of a perfect fluid DE model).

If one is interested in the late time universe, well after the time when radiation became negligible, then one can
combine Eqs. (25) and (30), assuming initial conditions such that v' = vb, to find
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where �̃ is defined as
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. (32)

In the LCDM model and at the late time, �̃ = 0, as shown in Appendix A. The previous equation can be solved
analytically [16] (see also [21]) and one finds

�2 / 1� H

a

Z
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H
, (33)

for the growing mode (same form of solution as Eq. (C6)) and �1 / H/a, for the decaying mode.

(since	for	these	models	f8=0,	f7=M2
Pl=-f9=f10/2)	



Equivalence	with	Pressureless	Perfect	Fluid	DE		
Suppose	the	model	mimic	the	background	expansion	of	a	Perfect	Fluid	Dark	energy	
model	(PFDE)	
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the original models in [14–16] which were shown to essentially allow for any desired background expansion history.
Furthermore, they also include the mimetic cubic Galileon which can, for instance, reproduce the expansion history
of the LCDM model by a suitable choice of b(') [18]. In this case, f8 = 0 and f7 = �M2

Pl = �f9 = f10/2. This
implies that there is no e↵ective anisotropic stress, i.e. � =  (because we assume ⇧f = 0 for all matter species in
this paper) and the coupling with gravity is the standard one. Eq. (26) then becomes
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We can see that this mimetic model e↵ectively introduces a fluid which clusters on all scales (i.e. cs = 0). In order
to find the solution for the Newtonian (Bardeen) potential � one only needs to specify one function, the background
expansion rate H. H can be found by solving the background equations of motion once the functions b, K and G3

are specified. However, here we follow a di↵erent approach. We assume that a solution for the inverse problem exists,
that is, we assume that suitable choices for those functions exist such that we can have for example the background
expansion history of a CDM plus perfect fluid DE model in GR (hereafter called PFDE). Given the freedom that
these models allow for the background history, for future work, it would be interesting to reconstruct the background
from observations and then use that background in Eq. (28) to find the prediction for the potential �. At the same
time, it would also be interesting to solve the inverse problem to find the constraints that the free functions b, K and
G3 should obey.

The background expansion of a PFDE model is given by

2M2
Pl(H2 �H0) = a2

X

f=r,m,DE

(⇢̄f + p̄f), (29)

where here r = � + ⌫ and m = b+ CDM . Plugging this equation in Eq. (28) we get
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5 = 0. (30)

Recalling that v' behaves as a dust velocity following Eq. (25), one can compare this equation with the second
equation in (B3) to find that they are equal if vDE in (B3) behaves as a dust velocity. That is guaranteed to be the
case if cs ⌘ c(DE)s = 0 by using Eq. (B2) (and if ⇧DE = 0, i.e. for PFDE). This shows that for the simpler models
defined in Eq. (27), if all matter species have ⇧ = 0 and if the background expansion is identical to the background
expansion of a perfect fluid DE in Einstein’s gravity with any EOS, then the mimetic models predict exactly the same
solution for � (which is equal to  ) as in the perfect fluid DE model with cs = 0. This result also implies that the
mimetic model with the LCDM background history also gives the same prediction for � as the LCDM model. This
is the main result of this section and one of the main results of this paper.

The previous equivalence argument assumes adiabatic initial conditions. One important di↵erence arises in the
presence of non-adiabatic initial conditions. The perfect fluid DE model with cs = 0 can support non-adiabatic
initial conditions between the CDM and DE velocities while in the mimetic model this situation cannot be realized.
This could in principle be used to distinguish these otherwise equivalent models at the level of linear perturbations
(assuming the mimetic model has the background of a perfect fluid DE model).

If one is interested in the late time universe, well after the time when radiation became negligible, then one can
combine Eqs. (25) and (30), assuming initial conditions such that v' = vb, to find
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⇣
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⌘
+ �

⇣
H2 + 2H0 + �̃H

⌘
= 0, (31)

where �̃ is defined as

�̃ ⌘ �H00 +HH0 +H3

H0 �H2
. (32)

In the LCDM model and at the late time, �̃ = 0, as shown in Appendix A. The previous equation can be solved
analytically [16] (see also [21]) and one finds

�2 / 1� H

a

Z
da

H
, (33)

for the growing mode (same form of solution as Eq. (C6)) and �1 / H/a, for the decaying mode.

VS	

The	two	eqns.	are	the	same	if	vDE	is	a	dust	velocity,	i.e.,	if	c_s(DE)=0	and	if	ΠDE	=0.	
	
If	the	background	expansion	is	that	of	PFDE	(with	any	equa1on	of	state),	these		
simple	mime1c	models	predict	the	same	solu1on	for	Φ	as	for	pressurless	PFDE.	
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are specified. However, here we follow a di↵erent approach. We assume that a solution for the inverse problem exists,
that is, we assume that suitable choices for those functions exist such that we can have for example the background
expansion history of a CDM plus perfect fluid DE model in GR (hereafter called PFDE). Given the freedom that
these models allow for the background history, for future work, it would be interesting to reconstruct the background
from observations and then use that background in Eq. (28) to find the prediction for the potential �. At the same
time, it would also be interesting to solve the inverse problem to find the constraints that the free functions b, K and
G3 should obey.
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Recalling that v' behaves as a dust velocity following Eq. (25), one can compare this equation with the second
equation in (B3) to find that they are equal if vDE in (B3) behaves as a dust velocity. That is guaranteed to be the
case if cs ⌘ c(DE)s = 0 by using Eq. (B2) (and if ⇧DE = 0, i.e. for PFDE). This shows that for the simpler models
defined in Eq. (27), if all matter species have ⇧ = 0 and if the background expansion is identical to the background
expansion of a perfect fluid DE in Einstein’s gravity with any EOS, then the mimetic models predict exactly the same
solution for � (which is equal to  ) as in the perfect fluid DE model with cs = 0. This result also implies that the
mimetic model with the LCDM background history also gives the same prediction for � as the LCDM model. This
is the main result of this section and one of the main results of this paper.

The previous equivalence argument assumes adiabatic initial conditions. One important di↵erence arises in the
presence of non-adiabatic initial conditions. The perfect fluid DE model with cs = 0 can support non-adiabatic
initial conditions between the CDM and DE velocities while in the mimetic model this situation cannot be realized.
This could in principle be used to distinguish these otherwise equivalent models at the level of linear perturbations
(assuming the mimetic model has the background of a perfect fluid DE model).

If one is interested in the late time universe, well after the time when radiation became negligible, then one can
combine Eqs. (25) and (30), assuming initial conditions such that v' = vb, to find
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where �̃ is defined as
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In the LCDM model and at the late time, �̃ = 0, as shown in Appendix A. The previous equation can be solved
analytically [16] (see also [21]) and one finds

�2 / 1� H

a

Z
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, (33)

for the growing mode (same form of solution as Eq. (C6)) and �1 / H/a, for the decaying mode.
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Vanishing	sound	speed		
Ø  	That	mime/c	Horndeski	models	can	mimick	pressureless	PFDE	might	not	come	as		
						a	surprise:		
							in		JCAP	1604,	042		(2016)	and	in	arXiv:1708.01850	we	have	shown	that		
							(if	the	other	fluids	are	dust)	then	the	sound	speed	for	scalar	perturba/ons	is	zero.		
	
Ø  	e.g.:	for	the	mime/c	cubic	Horndeski	models	G4=1/2	and	G5=0		
			

6

the original models in [14–16] which were shown to essentially allow for any desired background expansion history.
Furthermore, they also include the mimetic cubic Galileon which can, for instance, reproduce the expansion history
of the LCDM model by a suitable choice of b(') [18]. In this case, f8 = 0 and f7 = �M2

Pl = �f9 = f10/2. This
implies that there is no e↵ective anisotropic stress, i.e. � =  (because we assume ⇧f = 0 for all matter species in
this paper) and the coupling with gravity is the standard one. Eq. (26) then becomes
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We can see that this mimetic model e↵ectively introduces a fluid which clusters on all scales (i.e. cs = 0). In order
to find the solution for the Newtonian (Bardeen) potential � one only needs to specify one function, the background
expansion rate H. H can be found by solving the background equations of motion once the functions b, K and G3

are specified. However, here we follow a di↵erent approach. We assume that a solution for the inverse problem exists,
that is, we assume that suitable choices for those functions exist such that we can have for example the background
expansion history of a CDM plus perfect fluid DE model in GR (hereafter called PFDE). Given the freedom that
these models allow for the background history, for future work, it would be interesting to reconstruct the background
from observations and then use that background in Eq. (28) to find the prediction for the potential �. At the same
time, it would also be interesting to solve the inverse problem to find the constraints that the free functions b, K and
G3 should obey.

The background expansion of a PFDE model is given by

2M2
Pl(H2 �H0) = a2

X

f=r,m,DE

(⇢̄f + p̄f), (29)

where here r = � + ⌫ and m = b+ CDM . Plugging this equation in Eq. (28) we get
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Recalling that v' behaves as a dust velocity following Eq. (25), one can compare this equation with the second
equation in (B3) to find that they are equal if vDE in (B3) behaves as a dust velocity. That is guaranteed to be the
case if cs ⌘ c(DE)s = 0 by using Eq. (B2) (and if ⇧DE = 0, i.e. for PFDE). This shows that for the simpler models
defined in Eq. (27), if all matter species have ⇧ = 0 and if the background expansion is identical to the background
expansion of a perfect fluid DE in Einstein’s gravity with any EOS, then the mimetic models predict exactly the same
solution for � (which is equal to  ) as in the perfect fluid DE model with cs = 0. This result also implies that the
mimetic model with the LCDM background history also gives the same prediction for � as the LCDM model. This
is the main result of this section and one of the main results of this paper.

The previous equivalence argument assumes adiabatic initial conditions. One important di↵erence arises in the
presence of non-adiabatic initial conditions. The perfect fluid DE model with cs = 0 can support non-adiabatic
initial conditions between the CDM and DE velocities while in the mimetic model this situation cannot be realized.
This could in principle be used to distinguish these otherwise equivalent models at the level of linear perturbations
(assuming the mimetic model has the background of a perfect fluid DE model).

If one is interested in the late time universe, well after the time when radiation became negligible, then one can
combine Eqs. (25) and (30), assuming initial conditions such that v' = vb, to find
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= 0, (31)

where �̃ is defined as

�̃ ⌘ �H00 +HH0 +H3

H0 �H2
. (32)

In the LCDM model and at the late time, �̃ = 0, as shown in Appendix A. The previous equation can be solved
analytically [16] (see also [21]) and one finds

�2 / 1� H

a

Z
da

H
, (33)

for the growing mode (same form of solution as Eq. (C6)) and �1 / H/a, for the decaying mode.
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We can see that this mimetic model e↵ectively introduces a fluid which clusters on all scales (i.e. cs = 0). In order
to find the solution for the Newtonian (Bardeen) potential � one only needs to specify one function, the background
expansion rate H. H can be found by solving the background equations of motion once the functions b, K and G3

are specified. However, here we follow a di↵erent approach. We assume that a solution for the inverse problem exists,
that is, we assume that suitable choices for those functions exist such that we can have for example the background
expansion history of a CDM plus perfect fluid DE model in GR (hereafter called PFDE). Given the freedom that
these models allow for the background history, for future work, it would be interesting to reconstruct the background
from observations and then use that background in Eq. (28) to find the prediction for the potential �. At the same
time, it would also be interesting to solve the inverse problem to find the constraints that the free functions b, K and
G3 should obey.

The background expansion of a PFDE model is given by
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where here r = � + ⌫ and m = b+ CDM . Plugging this equation in Eq. (28) we get
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Recalling that v' behaves as a dust velocity following Eq. (25), one can compare this equation with the second
equation in (B3) to find that they are equal if vDE in (B3) behaves as a dust velocity. That is guaranteed to be the
case if cs ⌘ c(DE)s = 0 by using Eq. (B2) (and if ⇧DE = 0, i.e. for PFDE). This shows that for the simpler models
defined in Eq. (27), if all matter species have ⇧ = 0 and if the background expansion is identical to the background
expansion of a perfect fluid DE in Einstein’s gravity with any EOS, then the mimetic models predict exactly the same
solution for � (which is equal to  ) as in the perfect fluid DE model with cs = 0. This result also implies that the
mimetic model with the LCDM background history also gives the same prediction for � as the LCDM model. This
is the main result of this section and one of the main results of this paper.

The previous equivalence argument assumes adiabatic initial conditions. One important di↵erence arises in the
presence of non-adiabatic initial conditions. The perfect fluid DE model with cs = 0 can support non-adiabatic
initial conditions between the CDM and DE velocities while in the mimetic model this situation cannot be realized.
This could in principle be used to distinguish these otherwise equivalent models at the level of linear perturbations
(assuming the mimetic model has the background of a perfect fluid DE model).

If one is interested in the late time universe, well after the time when radiation became negligible, then one can
combine Eqs. (25) and (30), assuming initial conditions such that v' = vb, to find
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where �̃ is defined as
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In the LCDM model and at the late time, �̃ = 0, as shown in Appendix A. The previous equation can be solved
analytically [16] (see also [21]) and one finds
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, (33)

for the growing mode (same form of solution as Eq. (C6)) and �1 / H/a, for the decaying mode.
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are specified. However, here we follow a di↵erent approach. We assume that a solution for the inverse problem exists,
that is, we assume that suitable choices for those functions exist such that we can have for example the background
expansion history of a CDM plus perfect fluid DE model in GR (hereafter called PFDE). Given the freedom that
these models allow for the background history, for future work, it would be interesting to reconstruct the background
from observations and then use that background in Eq. (28) to find the prediction for the potential �. At the same
time, it would also be interesting to solve the inverse problem to find the constraints that the free functions b, K and
G3 should obey.

The background expansion of a PFDE model is given by
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Recalling that v' behaves as a dust velocity following Eq. (25), one can compare this equation with the second
equation in (B3) to find that they are equal if vDE in (B3) behaves as a dust velocity. That is guaranteed to be the
case if cs ⌘ c(DE)s = 0 by using Eq. (B2) (and if ⇧DE = 0, i.e. for PFDE). This shows that for the simpler models
defined in Eq. (27), if all matter species have ⇧ = 0 and if the background expansion is identical to the background
expansion of a perfect fluid DE in Einstein’s gravity with any EOS, then the mimetic models predict exactly the same
solution for � (which is equal to  ) as in the perfect fluid DE model with cs = 0. This result also implies that the
mimetic model with the LCDM background history also gives the same prediction for � as the LCDM model. This
is the main result of this section and one of the main results of this paper.

The previous equivalence argument assumes adiabatic initial conditions. One important di↵erence arises in the
presence of non-adiabatic initial conditions. The perfect fluid DE model with cs = 0 can support non-adiabatic
initial conditions between the CDM and DE velocities while in the mimetic model this situation cannot be realized.
This could in principle be used to distinguish these otherwise equivalent models at the level of linear perturbations
(assuming the mimetic model has the background of a perfect fluid DE model).

If one is interested in the late time universe, well after the time when radiation became negligible, then one can
combine Eqs. (25) and (30), assuming initial conditions such that v' = vb, to find
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where �̃ is defined as
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In the LCDM model and at the late time, �̃ = 0, as shown in Appendix A. The previous equation can be solved
analytically [16] (see also [21]) and one finds
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, (33)

for the growing mode (same form of solution as Eq. (C6)) and �1 / H/a, for the decaying mode.

ΛCDM	background	

	
Ø  	N.B.:	we	have	also	shown	that	the	sound	speed	is	zero	also	in	G3	mime/c	models.	
															Also	we	have	shown	that	the	sound	speed	is	exactly	zero	in	any	background		
															in	a	fully	non-perturba/ve	way,	see	JCAP	1604,	042		(2016).	

So	in	par1cular	if	the	background	is	ΛCDM	then	Φ	is	the	same	as	in	ΛCDM	



LSS	in	Mime/c	Horndeski	
Ø  	We	have	solved	numerically	the	linear	perturba/ons	eqns.	for	mime/c	models	and	
						for	generic	PFDE	models	under	some	simplifying	approxima/ons	(	e.g.		
						hydrodynamical	approx.,	instant	recombina/on,	and	a	toy	model	for	decoupling).		
						We	compare	our	results	with	CAMB	for	ΛCDM	and	with	fiyng	func/ons	by		
						Hu	(‘98),	Eisenstein	&	Hu	(‘96)	and	Takada	(06)	à	EHT	for	PFDE	models			
	
Ø  Disclaimer:	the	main	goal	is	not	to	constrain	the	parameters	of	the	models	with		
						great	accuracy	(for	the	moment),	but	we	have	performed	a	first	step	to	show	that		
						these	mime/c	models	can	give	reasonable	predic/ons	for	the	linear	power	spectra		



LSS	in	Mime/c	Horndeski	

Good	agreement	(to	about	10%)	of	our	code	with	EHT	fiyng	func/ons	for		
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FIG. 2: Top: Plot of P� today versus wavenumber k for the LCDM model and three PFDE models with di↵erent
sound speeds. The EOS of the PFDE used to produce this plot was w0 = �0.7, wa = 0. Both black and red lines
are for the LCDM model. The black line is the result using the fitting functions of EH, while the red line is the

result of our code. The green lines are the results for the PFDE model obtained with the fitting functions and some
numerical integration following EHT for three values of the sound speed. The blue lines where obtained with our
code. Bottom: Plots of the absolute value of the relative di↵erences between the four pairs of lines, LCDM, PFDE

c2s = 1, PFDE c2s = 0.01 and PFDE c2s = 0.

from CAMB to better than about 5%. When the coupling between baryons and photons before recombination is
ignored, we see that the result deviates from the true one by about 100% on small scales, k . 10�1.5Mpc�1. This
assumption has been often made in the literature without such an accuracy test. Our code takes into account the
coupling with a very simple model and it improves the accuracy to about 30% for 10�2Mpc�1 . k . 10�1Mpc�1.
For k . 10�2Mpc�1 our results agree to about 5% with CAMB. Taking the coupling into account reduces the power
for scales smaller than about 10�2Mpc�1. This is a well-known e↵ect for two decades [36]. It also introduces baryon
acoustic oscillations on these scales (compare the black and red curves). However the simple coupling prescription
that we use over amplifies these oscillations with respect to the correct coupling treatment in CAMB. From now on,
when we present numerical results obtained with our code, the coupling is always taken into account using the simple
coupling model.

In Fig. 2, we plot the power spectrum of � today versus wavenumber k for the PFDE model with three di↵erent
values of the sound speed and EOS wDE = w0 = �0.7 and for the LCDM model. For each model and parameter
combination we plot the results of our code and the results obtained with the fitting functions of EHT (Eq. (C9)).
We also plot the absolute value of the relative di↵erence between our code results and the fitting functions. On the
largest scales, the di↵erence between the amplitudes of the power spectrum between the LCDM and PFDE models
is due to the presence of DE perturbations which can be this large due to the fact the EOS is significantly di↵erent
from �1. For smaller sound speed, the sound horizon of the DE perturbations becomes smaller, which implies that
these perturbations can cluster on smaller scales, and this explains why the model with c2s = 0 has the highest power,
followed by the line with c2s = 0.01 and finally the least power for the line c2s = 1. Ref. [37] showed that the fitting
function agrees well (about 10% accuracy) with respect to the numerical result of the full integration of the Einstein
plus Boltzmann system of equations. In the bottom plot, we show the absolute value of the relative di↵erences
between the results obtained with our code and the fitting functions. One can see that our code agrees well with the
fitting functions results (to about 10%) for k . 10�2Mpc�1. For k & 10�2Mpc�1, our results lose accuracy (relative
di↵erence of about 30%) and this is due to the very simple model of recombination that we use and possibly also due
to the hydrodynamical approximation for all the fluids involved. Essentially this is an error of the transfer functions
that one would get with our code. We see that this loss of accuracy is similar for all 4 models.

Here	for	PFDE		

4

conformal time. In this work, a bar over a quantity denotes the background value. We chose this notation, di↵erent
from that in [21], because here we want to use the subscript 0 to denote a quantity at the present day.

The fluid has an energy-momentum tensor of the form

Tµ⌫ = (⇢+ p)uµu⌫ + pgµ⌫ + ⇡µ⌫ , (11)

where ⇢ is the energy density, p the pressure and ⇡µ⌫ is the anisotropic stress tensor which vanishes for perfect fluids.
The four-velocity, uµ, is a time-like vector and obeys the constraint uµu

µ = �1. It can be used to find

u0 = a�1(1� �), ui = a�1vi, (12)

where the velocity vi, is a first-order quantity, and can be written in terms of a scalar quantity, v, as vi = �ij@jv
(because we neglect intrinsic vector perturbations). Similarly, the anisotropic stress tensor can be described by a
scalar, denoted by ⇧ (see [21] for all the details). Then the background equations are simply

� a�2b('̄)('̄0)2 = 1, Ēij = �a2p̄�ij , ⇢̄0 + 3H(⇢̄+ p̄) = 0, (13)

with the definition H ⌘ a0/a. At first order, the set of independent equations is

2b̄�'0 + '̄0b̄,'�'� 2b̄'̄0� = 0, (14)

f7 + f8�'+ f9�+ a2⇧ = 0, (15)

f10 
0 + f11�'

0 +

✓
f20 +

a2(Ē + T̄ )

'̄0

◆
�'+ f14�� a2 (⇢̄+ p̄) v = 0, (16)

�⇢0 + 3H(�⇢+ �p)� 3(⇢̄+ p̄) 0 + (⇢̄+ p̄)@2v = 0, (17)

((⇢̄+ p̄)v)0 + �p+
2

3
@2⇧+ 4H(⇢̄+ p̄)v + (⇢̄+ p̄)� = 0, (18)

where the fi functions are complicated functions of K, G3, G4, G5 and their derivatives. The long expressions for fi
together with useful identities that these functions obey can be found in Appendix B of [21]. In Appendix A, using
the previous equations, we derive a second order evolution equation for �. This generalizes results present in [21]
to include the coupling to a fluid. The last two equations in the set are a direct consequence of the conservation
of the energy-momentum tensor and thus are valid independently of the theory of gravity. For the case of multiple
non-interacting fluids, these equations are valid with the definitions ⇢̄ ⌘ P

f ⇢̄f, �⇢ ⌘ P
f �⇢f, where the subscript

f denotes the di↵erent fluids, and equally for the pressure. (⇢̄ + p̄)v ⌘ P
f(⇢̄f + p̄f)vf. Furthermore, in this case,

these last two equations are also valid for each individual fluid. In the standard model of cosmology there are several
particles that are important for the evolution of the universe and here we will follow a hydrodynamical approach,
namely approximate them as perfect fluids. The label that specifies the fluid type, f, takes the following values: � for
photons, ⌫ for massless neutrinos (and anti-neutrinos), r for radiation (sum of the photons and the neutrinos), b for
baryons, CDM for cold dark matter, m for matter (sum of the baryon and the CDM) and PFDE for perfect fluid
dark energy. Perfect fluids have ⇧f = 0 (note however that these assumptions are not always accurate for photons
and free-streaming neutrinos). Radiation has wr = 1/3, matter has wm = 0 and in our numerical code we allow the
equation of state (EOS) of the DE to be time dependent following the so-called Chevallier-Polarski-Linder (CPL)
parametrization as w(a) = w0 + wa(1� a) [32, 33].

The EOS for the fluid f is wf ⌘ p̄/⇢̄. At the linear level, the pressure can be written as (see e.g. [34, 35])

�pf = c2(f)a�⇢f +
⇣
c2(f)s � c2(f)a

⌘ �
�⇢f + ⇢̄0fvf

�
, (19)

where the adiabatic sound speed is defined as c2(f)a ⌘ p̄0f/⇢̄
0

f and it is c2(f)a = wf if wf is a constant, and the sound speed
is denoted as c(f)s, which is a new parameter independent of c(f)a. For all these fluids we take c(f)s = c(f)a except for
the DE fluid.

We define the density contrast as �f ⌘ �⇢f/⇢̄f. The energy density parameter is defined as usual

⌦f =
⇢̄f

3H2M2
Pl

, (20)

where H ⌘ ȧ/a, the dot denotes derivative with respect to cosmic time t. We define a rescaled velocity as ṽf = Hvf.

with			
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FIG. 2: Top: Plot of P� today versus wavenumber k for the LCDM model and three PFDE models with di↵erent
sound speeds. The EOS of the PFDE used to produce this plot was w0 = �0.7, wa = 0. Both black and red lines
are for the LCDM model. The black line is the result using the fitting functions of EH, while the red line is the

result of our code. The green lines are the results for the PFDE model obtained with the fitting functions and some
numerical integration following EHT for three values of the sound speed. The blue lines where obtained with our
code. Bottom: Plots of the absolute value of the relative di↵erences between the four pairs of lines, LCDM, PFDE

c2s = 1, PFDE c2s = 0.01 and PFDE c2s = 0.

from CAMB to better than about 5%. When the coupling between baryons and photons before recombination is
ignored, we see that the result deviates from the true one by about 100% on small scales, k . 10�1.5Mpc�1. This
assumption has been often made in the literature without such an accuracy test. Our code takes into account the
coupling with a very simple model and it improves the accuracy to about 30% for 10�2Mpc�1 . k . 10�1Mpc�1.
For k . 10�2Mpc�1 our results agree to about 5% with CAMB. Taking the coupling into account reduces the power
for scales smaller than about 10�2Mpc�1. This is a well-known e↵ect for two decades [36]. It also introduces baryon
acoustic oscillations on these scales (compare the black and red curves). However the simple coupling prescription
that we use over amplifies these oscillations with respect to the correct coupling treatment in CAMB. From now on,
when we present numerical results obtained with our code, the coupling is always taken into account using the simple
coupling model.

In Fig. 2, we plot the power spectrum of � today versus wavenumber k for the PFDE model with three di↵erent
values of the sound speed and EOS wDE = w0 = �0.7 and for the LCDM model. For each model and parameter
combination we plot the results of our code and the results obtained with the fitting functions of EHT (Eq. (C9)).
We also plot the absolute value of the relative di↵erence between our code results and the fitting functions. On the
largest scales, the di↵erence between the amplitudes of the power spectrum between the LCDM and PFDE models
is due to the presence of DE perturbations which can be this large due to the fact the EOS is significantly di↵erent
from �1. For smaller sound speed, the sound horizon of the DE perturbations becomes smaller, which implies that
these perturbations can cluster on smaller scales, and this explains why the model with c2s = 0 has the highest power,
followed by the line with c2s = 0.01 and finally the least power for the line c2s = 1. Ref. [37] showed that the fitting
function agrees well (about 10% accuracy) with respect to the numerical result of the full integration of the Einstein
plus Boltzmann system of equations. In the bottom plot, we show the absolute value of the relative di↵erences
between the results obtained with our code and the fitting functions. One can see that our code agrees well with the
fitting functions results (to about 10%) for k . 10�2Mpc�1. For k & 10�2Mpc�1, our results lose accuracy (relative
di↵erence of about 30%) and this is due to the very simple model of recombination that we use and possibly also due
to the hydrodynamical approximation for all the fluids involved. Essentially this is an error of the transfer functions
that one would get with our code. We see that this loss of accuracy is similar for all 4 models.



Dis/nguishing	mime/c	from	PFDE	models		
Ø  	We	used	maKer	and	galaxy	power	spectra	extracted	by		
						Okumura,	Seljak,	McDonald,	Desjacques	et	al.	’12+	from	N-body	simula/ons	for	
						ΛCDMproduced	by		Desjacques,	Seljak,	Iiliev	09.			
						From	this	get	the	power	spectrum	for	φ.	
	
Ø  	12	independent	realiza/ons,	and	error	bars	computed	by	the	dispersion		
							(of	the	mean)	among	realiza/ons	(it	does	not	include	observa/onal	systema/cs).	
							Use	these	error	bars	as	proxy	of	the	sta/s/cal	error	bars	for	future	LSS	surveys.		
	
		
	
	
							



Dis/nguishing	mime/c	from	PFDE	models		

N.B.:	dis/nguishability	of	mime/c	from	other	models	is	strongly	dependent	on	
the	background:	e.g.,	if	the	background	is	exactly	fixed	to	the	ΛCDM,	then	the	
mime/c	model	exactly	predicts		the	same		power	spectrum	of	φ	as	in	ΛCDM.	
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FIG. 2: Top: Plot of P� today versus wavenumber k for the LCDM model and three PFDE models with di↵erent
sound speeds. The EOS of the PFDE used to produce this plot was w0 = �0.7, wa = 0. Both black and red lines
are for the LCDM model. The black line is the result using the fitting functions of EH, while the red line is the

result of our code. The green lines are the results for the PFDE model obtained with the fitting functions and some
numerical integration following EHT for three values of the sound speed. The blue lines where obtained with our
code. Bottom: Plots of the absolute value of the relative di↵erences between the four pairs of lines, LCDM, PFDE

c2s = 1, PFDE c2s = 0.01 and PFDE c2s = 0.

from CAMB to better than about 5%. When the coupling between baryons and photons before recombination is
ignored, we see that the result deviates from the true one by about 100% on small scales, k . 10�1.5Mpc�1. This
assumption has been often made in the literature without such an accuracy test. Our code takes into account the
coupling with a very simple model and it improves the accuracy to about 30% for 10�2Mpc�1 . k . 10�1Mpc�1.
For k . 10�2Mpc�1 our results agree to about 5% with CAMB. Taking the coupling into account reduces the power
for scales smaller than about 10�2Mpc�1. This is a well-known e↵ect for two decades [36]. It also introduces baryon
acoustic oscillations on these scales (compare the black and red curves). However the simple coupling prescription
that we use over amplifies these oscillations with respect to the correct coupling treatment in CAMB. From now on,
when we present numerical results obtained with our code, the coupling is always taken into account using the simple
coupling model.

In Fig. 2, we plot the power spectrum of � today versus wavenumber k for the PFDE model with three di↵erent
values of the sound speed and EOS wDE = w0 = �0.7 and for the LCDM model. For each model and parameter
combination we plot the results of our code and the results obtained with the fitting functions of EHT (Eq. (C9)).
We also plot the absolute value of the relative di↵erence between our code results and the fitting functions. On the
largest scales, the di↵erence between the amplitudes of the power spectrum between the LCDM and PFDE models
is due to the presence of DE perturbations which can be this large due to the fact the EOS is significantly di↵erent
from �1. For smaller sound speed, the sound horizon of the DE perturbations becomes smaller, which implies that
these perturbations can cluster on smaller scales, and this explains why the model with c2s = 0 has the highest power,
followed by the line with c2s = 0.01 and finally the least power for the line c2s = 1. Ref. [37] showed that the fitting
function agrees well (about 10% accuracy) with respect to the numerical result of the full integration of the Einstein
plus Boltzmann system of equations. In the bottom plot, we show the absolute value of the relative di↵erences
between the results obtained with our code and the fitting functions. One can see that our code agrees well with the
fitting functions results (to about 10%) for k . 10�2Mpc�1. For k & 10�2Mpc�1, our results lose accuracy (relative
di↵erence of about 30%) and this is due to the very simple model of recombination that we use and possibly also due
to the hydrodynamical approximation for all the fluids involved. Essentially this is an error of the transfer functions
that one would get with our code. We see that this loss of accuracy is similar for all 4 models.
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are for the LCDM model. The black line is the result using the fitting functions of EH, while the red line is the

result of our code. The green lines are the results for the PFDE model obtained with the fitting functions and some
numerical integration following EHT for three values of the sound speed. The blue lines where obtained with our
code. Bottom: Plots of the absolute value of the relative di↵erences between the four pairs of lines, LCDM, PFDE

c2s = 1, PFDE c2s = 0.01 and PFDE c2s = 0.

from CAMB to better than about 5%. When the coupling between baryons and photons before recombination is
ignored, we see that the result deviates from the true one by about 100% on small scales, k . 10�1.5Mpc�1. This
assumption has been often made in the literature without such an accuracy test. Our code takes into account the
coupling with a very simple model and it improves the accuracy to about 30% for 10�2Mpc�1 . k . 10�1Mpc�1.
For k . 10�2Mpc�1 our results agree to about 5% with CAMB. Taking the coupling into account reduces the power
for scales smaller than about 10�2Mpc�1. This is a well-known e↵ect for two decades [36]. It also introduces baryon
acoustic oscillations on these scales (compare the black and red curves). However the simple coupling prescription
that we use over amplifies these oscillations with respect to the correct coupling treatment in CAMB. From now on,
when we present numerical results obtained with our code, the coupling is always taken into account using the simple
coupling model.

In Fig. 2, we plot the power spectrum of � today versus wavenumber k for the PFDE model with three di↵erent
values of the sound speed and EOS wDE = w0 = �0.7 and for the LCDM model. For each model and parameter
combination we plot the results of our code and the results obtained with the fitting functions of EHT (Eq. (C9)).
We also plot the absolute value of the relative di↵erence between our code results and the fitting functions. On the
largest scales, the di↵erence between the amplitudes of the power spectrum between the LCDM and PFDE models
is due to the presence of DE perturbations which can be this large due to the fact the EOS is significantly di↵erent
from �1. For smaller sound speed, the sound horizon of the DE perturbations becomes smaller, which implies that
these perturbations can cluster on smaller scales, and this explains why the model with c2s = 0 has the highest power,
followed by the line with c2s = 0.01 and finally the least power for the line c2s = 1. Ref. [37] showed that the fitting
function agrees well (about 10% accuracy) with respect to the numerical result of the full integration of the Einstein
plus Boltzmann system of equations. In the bottom plot, we show the absolute value of the relative di↵erences
between the results obtained with our code and the fitting functions. One can see that our code agrees well with the
fitting functions results (to about 10%) for k . 10�2Mpc�1. For k & 10�2Mpc�1, our results lose accuracy (relative
di↵erence of about 30%) and this is due to the very simple model of recombination that we use and possibly also due
to the hydrodynamical approximation for all the fluids involved. Essentially this is an error of the transfer functions
that one would get with our code. We see that this loss of accuracy is similar for all 4 models.
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FIG. 5: Same as Fig. 4 but here the di↵erence is taken with respect to the power spectrum of the PFDE model with
cs = 1. Here we use the EHT fitting function.

FIG. 6: The left and right panels are the same as in Figs. 4 and 5, respectively, but here we assume a
time-dependent EOS as wDE = �0.7� 0.3(1� a). These plots use results obtained with our numerical

hydrodynamical code.

background expansion history. If one assumes that the background is given by CDM plus perfect fluid DE described
by GR with any equation of state, hereafter called PFDE model, then we showed that the mimetic model predicts
exactly the same solution for the Newtonian (Bardeen) potential � at linear order as the PFDE model with the sound
speed equal to zero. Therefore the two models are indistinguishable using that observable. Because we assume that
the mimetic field and the DM and DE fluids interact with the particles of the Standard model only gravitationally,
observables related to gravitational e↵ects are the only relevant ones. A corollary of the previous result is that the
mimetic model with the LCDM background history will also give the same prediction for � as the LCDM model.
The previous results assume adiabatic initial conditions. If the perturbations are not adiabatic one may be able to
distinguish between the mimetic and the PFDE models.

We then develop a simple code where we implement the perturbed hydrodynamical equations and the relevant metric
equations of motion in the mimetic model that we solve numerically. We use a simple toy model for recombination and
thus for small scales our code is not very accurate. Despite of this poor accuracy it is enough to achieve the goals of
this paper, which are to show that for some parameter choices one can have reasonable predictions for the linear power
spectrum and roughly under which circumstances we can distinguish these mimetic models from other popular DE
models. We leave for future work the implementation of the equations that we obtained in well-established Boltzmann
integrator codes and after that the task of parameter estimation in mimetic models. Given the present work, this is
a well motivated project now. When the EOS does not depend on time, we made extensive use of the well-known
fitting functions for the power spectrum, which are more accurate than our hydrodynamical code.

Using power spectrum measurements from LCDM N-body numerical simulations as a proxy for constraints that

We	can	dis/nguish	the	mime/c	model	from	both	ΛCDM	and		
PFDE	models	with	cs=1	



Some	final	comments	
Ø  	If	the	predic/ons	for	Φ	are	the	same	as	PFDE	with	zero	sound	speed,	than	why	
						should	we	invoke	the	mime/c	model?		
	
						*		in	mime/c	a	single	component,	the	mime/c	field,	accounts	for	both	DM	and	DE	
						*		PFDE	is	more	a	phenomenological	model.	Mime/c	can	be	regarded	as	a	first	step		
										towards	possible	underlying	theories	for	PFDE	
	
Ø  	Also:	there	are	in	fact	poten/al	ways	to	dis/nguish	mime/c	models	from	PFDE		
							with	zero	sound	speed	(to	be	explored)		
	
						*		the	equivalence	of	mime/c	models	with	PFDE	holds	for	adiaba-c	ini-al	condi-ons		
						*		such	an	equivalence	holds	for	linear	scales,	so	non-linear	evolu-on		
										might	be	different	
						*		direct	detec-on	of	DM	par-cles	would	rule	out	this	scenario	(the	mime-c	field	is		
										assumed	to	be	couplde	only	gravita-onally	with	the	standard	model	par-cles).			



Conclusions	
q  	Mime/c	gravity	provides	a	scenario	where	both	DM	and	DE	can	be	mimicked	by	a			
							modifica/on	of	gravity	(both	at	the	background	and	linear	perturba/on	level).		
	
q  Mime/c	Horndeski	is	a	fairly	general	model	which	encompasses		many	of	the	mime/c	

models	proposed	so	far.	
	
q  We	have	studied	in	details	its	linear	cosmological	perturba/ons.	In	the	simplest	mime/c	

cubic	Horndeski	models	the	mime/c	field	can	describe	both	DM	and	DE	mimicking	perfect	
fluid	dark	energy	models	with	zero	sound	speed	for	the	gravita/onal	poten/als	(providing		

							un	underlying	theory	for	PFDE).		
	
q  Possibility	to	dis/nguish	these	models	from	other	popular	DE	models:	e.g.	they	can	be	

dis/nguished	from	PFDE	with	unity	sound	speed	if	the	e.o.s.	is	-0.95	on	the	basis	of	maKer	
(galaxy)	power	spectrum	measurements.		

q  There	are	ways	to	rule	out	the	models:	e.g.,	non-adiaba1c	ini1al	condi1ons,		direct/
indirect	detec1on	of	DM	par1cles		

q  Various	next	steps	are	possible:	extract	other	cosmological	observables,	like	the	usual		
							Ξ	and	γ	parameters;		implementa0on	within	standard	numerical	codes;		
							what	about	non-linear	evolu0on;	what	about	bias?	........	
						
						







In	the	following	some	technical	details		
(see	relevant	papers)		



Mime/c	gravity	
Ø  	Why	one	gets	new	equa/ons	of	mo/ons?				
								

The	original	theory	is	generically	
invariant	under	disformal	transf.		
However	there	exists	a	par/cular	
subset	such	that	the	resul/ng	
equa/ons	of	mo/on	are	no	longer	
the	original	ones.	

Non-inver/bility	of	the		
disformal	transforma/on	
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plus metric signature. Greek indices denote spacetime coordinate labels and run from 0 to 3, with 0 denoting the
time coordinate. Latin indices denote three-space coordinates and run from 1 to 3. The reduced Planck mass is
MPl = 1/

p
8⇡G, where G is Newton’s constant.

II. THE MIMETIC HORNDESKI GRAVITY AND NOTATION

In this section, we briefly introduce the mimetic Horndeski gravity model that was first proposed in [18]. In this
work, we shall use this model as a unified dark matter model. Then we shall discuss linear scalar perturbations, first
studied in [21]. We will mostly follow the notation of [21].

For a very general action of mimetic gravity,

S =

Z
d4x

p�gL[gµ⌫ , @�1gµ⌫ , . . . , @�1 . . . @�pgµ⌫ ,', @�1', . . . , @�1 . . . @�q'] + Sm[gµ⌫ ,�m]

+

Z
d4x

p�g� (b(')gµ⌫@µ'@⌫'� 1) , (1)

where ' is the mimetic scalar field, � is a Lagrange multiplier field, �m is a generic matter field with action Sm which
is coupled with the metric gµ⌫ only. b(') is a potential function and the integers p, q � 2. By defining the following
quantities

Eµ⌫ =
2p�g

�(
p�gL)
�gµ⌫

, Tµ⌫ =
2p�g

�(
p�gLm)

�gµ⌫
, ⌦m =

�(
p�gLm)

��m
, where Sm[gµ⌫ ,�m] =

Z
d4x

p�gLm[gµ⌫ ,�m],(2)

where Lm is the matter Lagrangian density and Tµ⌫ denotes its energy-momentum tensor, one can write a complete
set of equations of motion as [18, 21]

b(')gµ⌫@µ'@⌫'� 1 = 0, (3)

Eµi + Tµi = (E + T )b(')@µ'@i', (4)

⌦m = 0. (5)

The first equation is known as the mimetic constraint and one sees that the time-time metric equation of motion
is redundant with respect to the previous set [21]. Furthermore, the mimetic scalar field equation of motion is also
redundant [21]. Eq. (5) implies the conservation of the energy momentum tensorrµT

µ⌫ = 0. The Lagrange multiplier
field is given by � = (E + T )/2, where E and T are the traces of Eµ⌫ and Tµ⌫ respectively. The Lagrangian L is the
Horndeski Lagrangian [19, 31] which is given by the sum of the following four terms

L0 = K (X,') , (6)

L1 = �G3 (X,')⇤', (7)

L2 = G4,X (X,')
h
(⇤')2 � (rµr⌫')

2
i
+RG4 (X,') , (8)

L3 = �1

6
G5,X (X,')

h
(⇤')3 � 3⇤' (rµr⌫')

2 + 2 (rµr⌫')
3
i
+Gµ⌫rµr⌫'G5 (X,') , (9)

where X = �1/2rµ'rµ', (rµr⌫')2 = rµr⌫'rµr⌫' and (rµr⌫')3 = rµr⌫'rµr⇢'r⌫r⇢'. The subscripts
,' and , X denote derivatives with respect to ' and X respectively. The Horndeski functions K, G3, G4, G5 of the
two variables, X and ', define a particular (mimetic) Horndeski theory.

We now turn to the study of linear scalar perturbations in this model with the matter field being described by a
fluid. All the necessary background and perturbed equations of motion can be found in Appendices A, B and C of
[21]. Here we will briefly present only the equations which we will need to use later.

We will work in the Poisson gauge, neglect vector and tensor perturbations and assume a spatially flat Friedmann-
Lemâıtre-Robertson-Walker (FLRW) background. The metric is then written as

g00 = �a2(⌧) (1 + 2�) , g0i = 0, gij = a2(⌧) (1� 2 ) �ij , (10)

where a is the FLRW scale factor that depends on the conformal time ⌧ , � denotes the generalised Newtonian
(Bardeen) potential and  the curvature perturbation. The scalar field is expanded as '(⌧,x) = '̄(⌧) + �'(⌧,x),
where '̄ denotes the background field value and �' is its perturbation. A prime denotes derivative with respect to
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B. Disformal transformation method

In this subsection, we will perform a disformal transformation of the type (1) on a very general scalar-tensor theory
and compute the equations of motion that result. This is a generalization of the results in Deruelle and Rua [17].
The further generalization for the case when the transformation field is different from the scalar field in the action is
discussed in Appendix A. This is the case in the “mimetic” dark matter model [11].
We start with a very general local action of the type

S =

∫

d4x
√
−gL[gµν , ∂λ1gµν , . . . , ∂λ1 . . . ∂λp

gµν ,Ψ, ∂λ1Ψ, . . . , ∂λ1 . . .∂λq
Ψ] + Sm[gµν ,φm], (10)

where the integers p, q ≥ 2, L is the Lagrangian density which is a functional of the metric, the scalar field and their
derivatives. Sm is the action for the matter field φm which we assume to be uncoupled with Ψ. For the sake of
concreteness, the Lagrangian L may be thought of as being the Lagrangian of Horndeski’s theory [29] or one of its
recently proposed healthy extensions [32–34].
The variation of the action with respect to the fundamental fields, Ψ, gµν and φm, is given by,

δS =
1

2

∫

d4x
√
−g(Eµν + T µν)δgµν +

∫

d4x ΩΨδΨ+

∫

d4x Ωmδφm, (11)

where

ΩΨ =
δ (

√
−gL)
δΨ

=
∂(
√
−gL)
∂Ψ

+
q
∑

h=1

(−1)h
d

dxλ1
. . .

d

dxλh

∂(
√
−gL)

∂ (∂λ1 . . .∂λh
Ψ)

, (12)

Eµν =
2√
−g

δ(
√
−gL)

δgµν
=

2√
−g

(

∂(
√
−gL)

∂gµν
+

p
∑

h=1

(−1)h
d

dxλ1
. . .

d

dxλh

∂(
√
−gL)

∂ (∂λ1 . . . ∂λh
gµν)

)

, (13)

T µν =
2√
−g

δ(
√
−gLm)

δgµν
, Ωm =

δ(
√
−gLm)

δφm
, where Sm[gµν ] =

∫

d4x
√
−gLm[gµν ,φm]. (14)

Lm is the matter Lagrangian density and T µν is the matter energy-momentum tensor. In the case of General Relativity,
the tensor Eµν is Eµν = −Gµν , where Gµν is the Einstein tensor.
We consider a disformal transformation of the type (1) from where one can obtain its variation as

δgµν = A δℓµν −
(

ℓµν
∂A

∂w
+ ∂µΨ∂νΨ

∂B

∂w

)

[

(ℓαρ∂αΨ) (ℓβσ∂βΨ) δℓρσ − 2ℓρσ(∂ρΨ) (∂σδΨ)
]

+

(

ℓµν
∂A

∂Ψ
+ ∂µΨ∂νΨ

∂B

∂Ψ

)

δΨ+B [(∂µΨ)(∂νδΨ) + (∂νΨ)(∂µδΨ)] . (15)

Inserting Eq. (15) into Eq. (11), the generalized Einstein equations of motion, δS/δℓµν = 0, are

A(Eµν + T µν) =

(

α1
∂A

∂w
+ α2

∂B

∂w

)

(ℓµρ∂ρΨ) (ℓνσ∂σΨ), (16)

and the generalized Klein-Gordon equation, δS/δΨ = 0, is,

1√
−g

∂ρ

{√
−g ∂σΨ

[

B(Eρσ + T ρσ) +

(

α1
∂A

∂w
+ α2

∂B

∂w

)

ℓρσ
]}

−
ΩΨ√
−g

=
1

2

(

α1
∂A

∂Ψ
+ α2

∂B

∂Ψ

)

, (17)

where we have defined two new quantities as

α1 ≡ (Eρσ + T ρσ)ℓρσ and α2 ≡ (Eρσ + T ρσ)∂ρΨ ∂σΨ. (18)

In addition, the equation of motion for the matter field is Ωm = 0.
By contracting the metric equations of motion (16) with ℓµν and with ∂µΨ∂νΨ, we find

α1

(

A− w
∂A

∂w

)

− α2w
∂B

∂w
= 0, α1 w

2 ∂A

∂w
− α2

(

A− w2 ∂B

∂w

)

= 0. (19)

These two equations form a two-dimensional linear system of algebraic equations for α1 and α2. The solutions of the
system are different depending on whether its determinant is zero or non-zero. In the next two subsections we study
these two cases separately.
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The stability of the “mimetic” dark matter model was analyzed in [16], where it was shown that the positiveness
of the energy density of the fluid is a sufficient condition for the absence of ghost instabilities. The puzzle of why
a simple reparametrization of variables can lead to new additional solutions of the equations of motion was also
explained in [16]. In [17], the issue of why new extra solutions are introduced by a reparametrization of variables was
revisited from a different viewpoint. The authors showed, in a clear and elegant way, that Einstein’s theory of General
Relativity is invariant under generic disformal transformations of the type gµν = A(Ψ, w)ℓµν+B(Ψ, w)∂µΨ∂νΨ, where
w ≡ ℓµν∂µΨ∂νΨ, A and B are arbitrary functions of their two variables1, gµν is the “physical” metric and ℓµν is the
new auxiliary metric. Ψ is a scalar field. This type of disformal transformations were first considered in [19]. See also
for example [20] and references therein. Additionally, they showed that there exists a particular subset of the previous
general case, such that the resulting equations of motion are no longer the general relativistic equations but instead
one finds the equations of motion of the so-called “mimetic” dark matter model (also called “mimetic gravity”) [11].
In [21] (see also [12, 16]), it was shown that the equations of motion of mimetic gravity can be derived by extremizing,

with respect to gµν , the Einstein-Hilbert action with the addition of the term
∫

d4x
√
−gλ(gµν∂µΨ∂νΨ− 1), where λ

is a new field playing the role of a Lagrange multiplier.
The invariance of cosmological perturbations under disformal transformations has been recently studied in for

example [22–27] and mimetic theories of modified gravity have been considered in [28] and references therein.
In this paper, we will generalize some results of [16, 17, 21] to a very general scalar-tensor theory of gravity. Our

results will be valid for a very general theory, however, for concreteness one may think of the scalar-tensor theory
as being the most general healthy second-order theory known as the Horndeski model [29] (see also [30] for a recent
rederivation and [31] for another proof of equivalence with the original formulation of Horndeski). One may also think
of it as the recently proposed healthy extensions of the Horndeski model, the so-called G3 theories [32, 33] or even
their extensions [34].
This paper is organized as follows. In the next section, we will show under which conditions the previous disformal

transformation is non-invertible. Then we will show that very general scalar-tensor theories of gravity are invariant
under generic disformal transformations. For a particular special subset of those generic disformal transformation the
invariance is broken and one finds new equations of motion which are a generalization of the so-called “mimetic” dark
matter theory. We will show that the invariance is broken exactly for transformations that satisfy the non-invertibility
condition. In section III, we will demonstrate that the new mimetic general scalar-tensor theory equations of motion
can also be derived by the use of a Lagrange multiplier as in the General Relativity case. We also briefly comment
on the higher-derivative nature of the resulting equations. In section IV, we shall present some applications of our
results. For instance we will show that the simplest mimetic scalar-tensor model is able to mimic the cosmological
background of a flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) model with a barotropic perfect fluid with an
arbitrary equation of state. Finally, section V is devoted to the conclusions. We use the metric signature (−,+,+,+)
and we set the reduced Planck mass to unity.

II. MIMETIC GRAVITY FROM A DISFORMAL TRANSFORMATION

In this section, we will consider disformal transformations of very general scalar-tensor theories of gravity. We
will show that these theories are invariant under generic disformal transformations. However for a special subset
of non-invertible disformal transformations the theory is modified resulting in new equations of motion which may
possess novel solutions.

A. Non-invertibility condition of a disformal transformation

In this first subsection we will derive what is the condition for non-invertibility of a disformal transformation of the
type

gµν = A(Ψ, w)ℓµν +B(Ψ, w)∂µΨ∂νΨ, (1)

where w is defined as

w ≡ ℓρσ∂ρΨ∂σΨ. (2)

1 We will assume A > 0. In addition, the transformation should preserve the Lorentzian signature, it must be causal and the transformation
for the inverse metric and the volume element should be non-singular. These impose additional conditions on the free functions A and
B, see [18] for the details.
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These two equations form a two-dimensional linear system of algebraic equations for α1 and α2. The solutions of the
system are different depending on whether its determinant is zero or non-zero. In the next two subsections we study
these two cases separately.
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In this subsection, we will perform a disformal transformation of the type (1) on a very general scalar-tensor theory
and compute the equations of motion that result. This is a generalization of the results in Deruelle and Rua [17].
The further generalization for the case when the transformation field is different from the scalar field in the action is
discussed in Appendix A. This is the case in the “mimetic” dark matter model [11].
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derivatives. Sm is the action for the matter field φm which we assume to be uncoupled with Ψ. For the sake of
concreteness, the Lagrangian L may be thought of as being the Lagrangian of Horndeski’s theory [29] or one of its
recently proposed healthy extensions [32–34].
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These two equations form a two-dimensional linear system of algebraic equations for α1 and α2. The solutions of the
system are different depending on whether its determinant is zero or non-zero. In the next two subsections we study
these two cases separately.
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The stability of the “mimetic” dark matter model was analyzed in [16], where it was shown that the positiveness
of the energy density of the fluid is a sufficient condition for the absence of ghost instabilities. The puzzle of why
a simple reparametrization of variables can lead to new additional solutions of the equations of motion was also
explained in [16]. In [17], the issue of why new extra solutions are introduced by a reparametrization of variables was
revisited from a different viewpoint. The authors showed, in a clear and elegant way, that Einstein’s theory of General
Relativity is invariant under generic disformal transformations of the type gµν = A(Ψ, w)ℓµν+B(Ψ, w)∂µΨ∂νΨ, where
w ≡ ℓµν∂µΨ∂νΨ, A and B are arbitrary functions of their two variables1, gµν is the “physical” metric and ℓµν is the
new auxiliary metric. Ψ is a scalar field. This type of disformal transformations were first considered in [19]. See also
for example [20] and references therein. Additionally, they showed that there exists a particular subset of the previous
general case, such that the resulting equations of motion are no longer the general relativistic equations but instead
one finds the equations of motion of the so-called “mimetic” dark matter model (also called “mimetic gravity”) [11].
In [21] (see also [12, 16]), it was shown that the equations of motion of mimetic gravity can be derived by extremizing,

with respect to gµν , the Einstein-Hilbert action with the addition of the term
∫

d4x
√
−gλ(gµν∂µΨ∂νΨ− 1), where λ

is a new field playing the role of a Lagrange multiplier.
The invariance of cosmological perturbations under disformal transformations has been recently studied in for

example [22–27] and mimetic theories of modified gravity have been considered in [28] and references therein.
In this paper, we will generalize some results of [16, 17, 21] to a very general scalar-tensor theory of gravity. Our

results will be valid for a very general theory, however, for concreteness one may think of the scalar-tensor theory
as being the most general healthy second-order theory known as the Horndeski model [29] (see also [30] for a recent
rederivation and [31] for another proof of equivalence with the original formulation of Horndeski). One may also think
of it as the recently proposed healthy extensions of the Horndeski model, the so-called G3 theories [32, 33] or even
their extensions [34].
This paper is organized as follows. In the next section, we will show under which conditions the previous disformal

transformation is non-invertible. Then we will show that very general scalar-tensor theories of gravity are invariant
under generic disformal transformations. For a particular special subset of those generic disformal transformation the
invariance is broken and one finds new equations of motion which are a generalization of the so-called “mimetic” dark
matter theory. We will show that the invariance is broken exactly for transformations that satisfy the non-invertibility
condition. In section III, we will demonstrate that the new mimetic general scalar-tensor theory equations of motion
can also be derived by the use of a Lagrange multiplier as in the General Relativity case. We also briefly comment
on the higher-derivative nature of the resulting equations. In section IV, we shall present some applications of our
results. For instance we will show that the simplest mimetic scalar-tensor model is able to mimic the cosmological
background of a flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) model with a barotropic perfect fluid with an
arbitrary equation of state. Finally, section V is devoted to the conclusions. We use the metric signature (−,+,+,+)
and we set the reduced Planck mass to unity.

II. MIMETIC GRAVITY FROM A DISFORMAL TRANSFORMATION

In this section, we will consider disformal transformations of very general scalar-tensor theories of gravity. We
will show that these theories are invariant under generic disformal transformations. However for a special subset
of non-invertible disformal transformations the theory is modified resulting in new equations of motion which may
possess novel solutions.

A. Non-invertibility condition of a disformal transformation

In this first subsection we will derive what is the condition for non-invertibility of a disformal transformation of the
type

gµν = A(Ψ, w)ℓµν +B(Ψ, w)∂µΨ∂νΨ, (1)

where w is defined as

w ≡ ℓρσ∂ρΨ∂σΨ. (2)

1 We will assume A > 0. In addition, the transformation should preserve the Lorentzian signature, it must be causal and the transformation
for the inverse metric and the volume element should be non-singular. These impose additional conditions on the free functions A and
B, see [18] for the details.
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where we have defined two new quantities as
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In addition, the equation of motion for the matter field is Ωm = 0.
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These two equations form a two-dimensional linear system of algebraic equations for α1 and α2. The solutions of the
system are different depending on whether its determinant is zero or non-zero. In the next two subsections we study
these two cases separately.
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These two equations form a two-dimensional linear system of algebraic equations for α1 and α2. The solutions of the
system are different depending on whether its determinant is zero or non-zero. In the next two subsections we study
these two cases separately.

GENERIC	CASE:		Det(M)	≠	0				

5

1. Generic case

We may write the system of equations (19) in matrix form, as

M

(

α1

α2

)

= 0, where M =

⎛

⎝

A− w ∂A
∂w −w ∂B

∂w

w2 ∂A
∂w −A+ w2 ∂B

∂w

⎞

⎠ . (20)

The determinant of the system is

det(M) = w2A
∂

∂w

(

B +
A

w

)

. (21)

If det(M) ̸= 0 then the only solution is α1 = α2 = 0. For this generic case the equations of motion, Eqs. (16) and
(17), reduce to

Eµν + T µν = 0, (22)

ΩΨ = 0. (23)

When written in terms of the metric gµν , these two equations in addition to Ωm = 0 are the same equations as in the
original theory before doing any disformal transformation. In other words, by taking the variation with respect to the
original metric gµν or with respect to ℓµν and Ψ we get, in the end, the same equations of motion. This shows that
generically (i.e. det(M) ̸= 0) the theory is invariant under disformal transformations of the type (1). This generalizes
the results of [17] (obtained for Einstein gravity) to a very general scalar-tensor theory of the kind (10). This result
is less surprising if one recalls that all one is doing is a well-behaved invertible change of variables.

2. Mimetic gravity

If the determinant of the system is zero then one can solve the differential equation (21) to find that the free function
B(Ψ, w) has to be of the form

B(Ψ, w) = −
A(Ψ, w)

w
+ b(Ψ), (24)

where b(Ψ) is an integration constant (it does not depend on w but it may depends on Ψ) and we assume it is non-zero
for all Ψ. This solution was previously found in [17] for the case when the starting action in Eq. (10) is simply the
Einstein-Hilbert action. Here we show that solution (24) is still valid for a general action of the form (10), irrespective
of whether the scalar field in the action is the same or different than the scalar field involved in the transformation,
as shown in Appendix A. This is a consequence of the fact that the determinant of the system, Eq. (21), does not
depend on the form of the starting action (10) and it is the same as the determinant found in [17]. Substituting
solution (24) into the system (19) gives us α2 = wα1. Hence, the equations of motion (16) and (17) become

Eµν + T µν =
α1

w
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2
α1 w

db

dΨ
. (25)

Now, the disformal transformation is of the particular type

gµν = A(Ψ, w) ℓµν + ∂µΨ ∂νΨ

(

b(Ψ)−
A(Ψ, w)

w

)

. (26)

The inverse metric transforms (recall we assume b ̸= 0) as

gµν =
ℓµν

A
+

A− w b

A bw2
(ℓµρ∂ρΨ) (ℓνσ∂σΨ), (27)

and these equations can be used to write (25) in terms of gµν (explicitly) only. Similarly to [17], we have ℓµρ∂ρΨ =
bw∂µΨ and α1 = (E+T )/(bw) where ∂µΨ ≡ gµρ∂ρΨ and E+T ≡ gρσ(Eρσ +T ρσ). By contracting ℓµρ∂ρΨ = bw∂µΨ
with ∂µΨ and using the definition of w one can also find that

b(Ψ)gµν∂µΨ∂νΨ = 1. (28)
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solution (24) into the system (19) gives us α2 = wα1. Hence, the equations of motion (16) and (17) become

Eµν + T µν =
α1

w
(ℓµρ∂ρΨ) (ℓνσ∂σΨ),

1√
−g

∂ρ
(√

−g bα1 ℓ
ρσ∂σΨ

)

−
ΩΨ√
−g

=
1

2
α1 w

db

dΨ
. (25)

Now, the disformal transformation is of the particular type

gµν = A(Ψ, w) ℓµν + ∂µΨ ∂νΨ

(

b(Ψ)−
A(Ψ, w)

w

)

. (26)

The inverse metric transforms (recall we assume b ̸= 0) as

gµν =
ℓµν

A
+

A− w b

A bw2
(ℓµρ∂ρΨ) (ℓνσ∂σΨ), (27)

and these equations can be used to write (25) in terms of gµν (explicitly) only. Similarly to [17], we have ℓµρ∂ρΨ =
bw∂µΨ and α1 = (E+T )/(bw) where ∂µΨ ≡ gµρ∂ρΨ and E+T ≡ gρσ(Eρσ +T ρσ). By contracting ℓµρ∂ρΨ = bw∂µΨ
with ∂µΨ and using the definition of w one can also find that

b(Ψ)gµν∂µΨ∂νΨ = 1. (28)

This	shows	that	generically	the	star/ng	theory	is	invariant	under	disformal	tranformna/ons	

MIMETIC	CASE:		Det(M)	=	0				

5

1. Generic case

We may write the system of equations (19) in matrix form, as

M

(

α1

α2

)

= 0, where M =

⎛

⎝

A− w ∂A
∂w −w ∂B

∂w

w2 ∂A
∂w −A+ w2 ∂B

∂w

⎞

⎠ . (20)

The determinant of the system is

det(M) = w2A
∂

∂w

(

B +
A

w

)

. (21)

If det(M) ̸= 0 then the only solution is α1 = α2 = 0. For this generic case the equations of motion, Eqs. (16) and
(17), reduce to

Eµν + T µν = 0, (22)

ΩΨ = 0. (23)

When written in terms of the metric gµν , these two equations in addition to Ωm = 0 are the same equations as in the
original theory before doing any disformal transformation. In other words, by taking the variation with respect to the
original metric gµν or with respect to ℓµν and Ψ we get, in the end, the same equations of motion. This shows that
generically (i.e. det(M) ̸= 0) the theory is invariant under disformal transformations of the type (1). This generalizes
the results of [17] (obtained for Einstein gravity) to a very general scalar-tensor theory of the kind (10). This result
is less surprising if one recalls that all one is doing is a well-behaved invertible change of variables.

2. Mimetic gravity

If the determinant of the system is zero then one can solve the differential equation (21) to find that the free function
B(Ψ, w) has to be of the form

B(Ψ, w) = −
A(Ψ, w)

w
+ b(Ψ), (24)

where b(Ψ) is an integration constant (it does not depend on w but it may depends on Ψ) and we assume it is non-zero
for all Ψ. This solution was previously found in [17] for the case when the starting action in Eq. (10) is simply the
Einstein-Hilbert action. Here we show that solution (24) is still valid for a general action of the form (10), irrespective
of whether the scalar field in the action is the same or different than the scalar field involved in the transformation,
as shown in Appendix A. This is a consequence of the fact that the determinant of the system, Eq. (21), does not
depend on the form of the starting action (10) and it is the same as the determinant found in [17]. Substituting
solution (24) into the system (19) gives us α2 = wα1. Hence, the equations of motion (16) and (17) become

Eµν + T µν =
α1

w
(ℓµρ∂ρΨ) (ℓνσ∂σΨ),

1√
−g

∂ρ
(√

−g bα1 ℓ
ρσ∂σΨ

)

−
ΩΨ√
−g

=
1

2
α1 w

db

dΨ
. (25)

Now, the disformal transformation is of the particular type

gµν = A(Ψ, w) ℓµν + ∂µΨ ∂νΨ

(

b(Ψ)−
A(Ψ, w)

w

)

. (26)

The inverse metric transforms (recall we assume b ̸= 0) as

gµν =
ℓµν

A
+

A− w b

A bw2
(ℓµρ∂ρΨ) (ℓνσ∂σΨ), (27)

and these equations can be used to write (25) in terms of gµν (explicitly) only. Similarly to [17], we have ℓµρ∂ρΨ =
bw∂µΨ and α1 = (E+T )/(bw) where ∂µΨ ≡ gµρ∂ρΨ and E+T ≡ gρσ(Eρσ +T ρσ). By contracting ℓµρ∂ρΨ = bw∂µΨ
with ∂µΨ and using the definition of w one can also find that

b(Ψ)gµν∂µΨ∂νΨ = 1. (28)

and	in	this	case	one	obtains	different	eqns.	of	mo/on	(the	mime/c	eqns.	showed	before)	

Ø  	finally:	it	is	not	difficult	to	show	that	this	is	exactly	the	condi/on	for	the	disformal		
							transforma/on	to	be	non-inver-ble		


