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Bigravity

Two gravitons with both gravitons coupled 
to matter with a non-diagonal mass matrix

Why?

Ghost free massive gravity with one graviton massless and one 
massive on diagonalisation of the mass matrix  Could have interesting 

predictions. Could give rise to signals in gravitational waves
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The Model

The action consists of three terms. Here we are using the vielbein formulation

The Einstein Hilbert term

with vielbeins constrained to satisfy the symmetric condition
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Finally thereÕs the matter term 
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with matter coupling to the Jordan metric, deÞned as

where the symmetric tensor is

⇤4 = m2M 2
Pland

m is related to the graviton 
mass, of O (H0)



choosing a cosmological background

ds2
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The ratio of the two lapse functions, b, plays a crucial role in the 
modiÞcation of gravity in this class of models, as we will see later

Matter couples to the Jordan frame metric with scale factor

aJ = ! 1a1 + ! 2a2



The cosmological dynamics are governed 
by the two Friedmann equations
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with H1 and H2 derived from the respective scale factors 
and the mÕs arise from the potential term. There are two 

branches. We consider the branch satisfying

b=
a2H2

a1H1



The dynamics at both early and late times simplify. In both 
radiation and matter era when dark energy is negligible the ratio 

of scale factors converges to a constant
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! 2
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When dark energy dominates, ie when the lambda 
terms dominate in both Friedmann equations then
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In between eras b deviates from 1 and X deviates from its 
asymptotic value. In particular in the current era 

For most of the evolution of the Universe we found b = 1

When b deviates from 1, as in the present era, we Þnd 
non-standard gravitational wave propagation

b != 1





The potential term induces a mass term for the gravitons via a mass matrix

M 2
!" (a# ) = ! 24m2(b! b" )1/ 2m!" (a# )

this is symmetric of order m2

The mass matrix is non-diagonal and evolves with time.!
This induces a mixing between the two gravitons which!

could be observed as birefringence.

This leads to a coupling term in the evolution of the two gravitons
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We can now study the emission of gravitational waves. Note that 
matter couples to the Jordan frame energy-momentum tensor and 

assuming we can neglect the cosmological evolution, we have
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We expect deviations from GR when b deviates from 1, 
ie today. We can analyse this in a different situations. 

Gravitational Waves



Binary Pulsars



We can compute the energy loss in binary pulsars in 
our bigravity model and compare to that in GR.
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Note this only deviates from GR when b != 1

This is the case in the present Universe. Since the energy loss in 
binary pulsars in know we can use this to constrain bigravity
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which constrains b at O(10! 3)



Now consider the propagation of gravitational waves. If the initial wave is 
due to a localised source we can approximate the waves as plane-waves

The propagation 
equations for the 
gravitons have 
eigenmodes

h! ± = A! ± ei (" ±t ! i #k. #x )

with eigenfrequencies
! 2
+ ! "k2 + ÷M 2

11 +
÷M 4
12

(1 " b2)"k2 + ÷M 2
11 " ÷M 2

22

! 2
! ! b2"k2 + ÷M 2

22 "
÷M 4
12

(1 " b2)"k2 + ÷M 2
11 " ÷M 2

22

where the MÕs come from the mass matrix and are of order H0



This gives two eigenmodes

h! = h2 ! Ch1, h+ = h1 + Ch2
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Computing the gravitational waves after emission we 
then Þnd the Jordan frame gravitational wave to be
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this is the wave form of a far away source when the 
gravitational waves show birefringence 
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with a small time dependent phase shift
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The wave propagates with energy

where

The effective speed is tightly constrained when b < 1 by 
Cerenkov radiation since cosmic rays can emit gravitons, 
depleting the number of cosmic rays observed.This gives 

(1 ! b) ! 10�17

Graviton Speed
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Figure 2: A graviton decaying into two photons

Galileon dark energy, the Friedmann equation is modified and the normalisation of the

Hubble rate now implies that
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where

⌦g = 1 ! ⌦! (3.23)

and ⌦! is the fraction of the contents of the Universe given by a pure cosmological constant.

When c̄0 " c̄3 # c̄2, we find that
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and the binary pulsar constraint is satisfied provided
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When c4 is negative, the constraint from the propagation of cosmic rays is much stronger

at the 10! 17 level. As a result we will only focus on the c4 % 0 case. Given the constraint

of equation (3.25) the cubic term is indeed dominant and we find that the dark energy

equation of state now reads
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can be estimated to be p̄! " ! 4c̄0. The equation of state is close to ! 1
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meaning that c̄0 is a fixed function of the fraction of dark energy carried by the Galileon.

This implies that c̄2 & 1 in order to guarantee that the cubic term dominates. These

approximations are well verified numerically.

4. Graviton Instability

4.1 Graviton Decay

We have seen that the speed of gravitational waves emitted by binary pulsars can deviate

from unity by a one percent for almost cubic Galileon models even if they are a subdominant
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Figure 3: A graviton Cerenkov producing two photons

4.2 Cerenkov Radiation

The gravitons can also emit two photons by the Cerenkov e↵ect thereby losing energy and

increasing the di�culty of detecting them. This process is shown in Figure 3. In this case,

the interaction Lagrangian contains
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and the interaction Hamiltonian is
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where the operators in the Lagrangian are normal ordered. The emitted energy carried by

the two photons is given by
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Defining the polarisation tensors
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Figure 1 . Feynman diagram for the process

the process so that one graviton with the momentumk is emitted from the massive particle
with the initial momentum pin , as shown in Þg.1, is written as [49]
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We are now interested in the subhorizon scales,k/a, p/a, m, c sk/a " H , and the situation
so that the scale factora is constant, then we can approximate as
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For b > 1 the strongest constraint comes from binary pulsars, 
but computing the graviton decay is good for the soul!

What are the prospects?

Consider gravitational waves at distance d from source and 
consider the square of the amplitude. We Þnd the signal has 
a change in amplitude and time modulation and at time t=d
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with the spectrum modulated by a frequency dependent pre-factor



When one of the betaÕs vanishes we get
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the modulation of the GR signal is relevant. It is possible 
that sources around d=100 Mpc and a sensitivity in nano 
Hertz range we might observe effects for                     .|b� 1| ! 10! 7



Conclusions

Emission and progagation of gravitational waves in doubly coupled bigravity

Deviations from GR governed by the parameter b, which only 
differs from 1 in the transient cosmological era between the matter 

era in the past and the future dark energy era

When b != 1 cT != 1the speed of gravitational waves

but b is tightly constrained by cosmic rays and binary pulsar, so 
small deviation from unity. May still get possible modulations of the 

wave form in Jordan frame Ñie when coupled to matter

Detection of gravitational wave and an electromagnetic counterpart 
would constrain b, or give rise to interesting detections 

Multi-messenger signals are important


