Fermilab Department of Science

Scientific Computing Facilities

Bo Jayatilaka Computational Science Working Group Pre-Meeting 12 April 2017

Outline

- Overview of Fermilab Computing Facilities
 CPU
 - Tape/Disk
- External computing facilities used by Fermilab experiments
- Some thoughts on future directions

On-site computing facilities

Feynman Computing Center (FCC)

- 2 rooms with 0.75MW nominal cooling and electrical power each
 - UPS with generator backup
- Hosts power-critical services
 - Central services (mail, web servers, etc.) and disk servers

₹1500

Grid Computing Center (GCC)

- 3 rooms with 0.9MW nominal cooling and electrical power each
 - UPS with taps for external generators (no permanent generator)
- Hosts CPUs and tape libraries
- Lattice Computing Center (LCC)
 - Being decommissioned

CPU

- Most scientific computing at Fermilab is done via High-Throughput Computing (HTC)
 - Most jobs do not require to talk to each other while running
 - Job submission almost entirely via HTCondor
- Primary HTC facilities used by experimenters
 - Fermigrid [~20k cores], used by 30+ Fermilab experiments
 - CMS Tier-1 [~20k cores], used by CMS central production and global CMS community
 - LPC [~5k cores], used by USCMS community (primarily based at Fermilab)
 - HTC clusters are all running on **x86** architecture hardware
- Lattice QCD and others utilize High-Performance Computing (HPC)
 - ~18.5k CPU cores and ~700 GPU cores
 - HPC nodes connected via Infiniband (40Gbps) interconnect

Mass storage

- Primary storage medium is magnetic tape
 - Oracle SL8500 robotic libraries (10k slots each)
 - 3x for CMS, 4x for all other experiments
 - ~70 drives (mix of T10KC [5TB], T10KD [8TB], and LTO4 [800GB])
 - ~15k active media cartridges
 - Total of **93.4PB** active tape storage
 - 38.9 PB CMS, 20.5 PB CDF+D0, 33.9 PB all other expts
- **Disk** storage via dCache
 - 3.5PB caching for tape access, 1.4PB persistent space, ~20PB combined use by CMS
- Other disk storage
 - Network attached storage (NAS) on interactive nodes
 - EOS pool on LPC cluster (~5PB)

Outside of Fermilab

- FNAL GPGrid and CMS Tier1 are part of the wider **Open Science Grid** (OSG) computational fabric
 - Fermilab experiments can use **opportunistic resources** that are part of the OSG
 - Conversely, Fermilab resources, when otherwise idle, can be used by external opportunistic users from the OSG
- Allocation-based HPC (supercomputers)
 - Some at National Labs, some (NSF-funded) at university centers
 - A number accessible via OSG

Commercial Clouds

- e.g., Amazon AWS, Google, Microsoft Azure
- CMS and Nova have both performed large-scale production exercises on cloud resources
- In the near future: **HEPCloud**
 - Single infrastructure at Fermilab to allow access to all of the above resource types

One example of a coming challenge

Estimates of resource needs for HL-LHC

Derived (1 copy): 2016: 80 PB → 2027: 900 PB

Ian Bird WLCG Meeting 2016

57 Fermilad

Technology at ~20%/year will bring x6-10 in 10-11 years

- Simple model based on today's computing models, but with expected HL-LHC operating parameters (pile-up, trigger rates, etc.)
- At least x10 above what is realistic to expect from technology with reasonably constant cost

CERN	WLCG	8 October 2016	lan Bird	10	
					the second second second

Changing landscape

- HEP has enjoyed a decade of computing resource homogeneity
 - Intel/AMD x86(-64) architecture
 - Dennard scaling reliable for most of this period
- Data access follows sequential paradigm
 - Largely unchanged since late 20th century
- Resource heterogeneity is coming here
 - GPUs/vector processors increasingly prevalent
- Newer analysis techniques (e.g. deep learning) incredibly inefficient with sequential data access
- Shifting national cyberinfrastructure priorities
 - "Leadership class" **supercomputers** dwarf dedicated HEP computing resources

Some things to consider*

- Scaling laws seem to end across the board
 - CPU feature scaling has slowed considerably (now at 10 nm)
 - Hard drive areal density improvements have slowed
 - Competition diminishes across all sectors of hardware manufacturing
- End of "one size fits all" computing facilities?
 - Consider things such as specialized data reduction facilities
 - Do data need to always be co-located with CPU?
 - Can we optimize (a subset) of facilities for new analysis techniques?
- We need to better leverage available (external) resources
 - HEP is now one of the smaller "big data" uses in the world
 - Keep an eye on industry trends and also understand where using commercial resources makes sense
 - HEPCloud is a big step in this direction

* Views expressed here are my own

Backup

CPU: Usage (30 days)

CMS Tier1

8000

6000

4000

2000

0

3/15

Total Slots

Claimed Slots

Facility CPU ages

How efficiently are we using the CPU?

Storage trends

93.38 Active Petabytes On Tape 4/1/2017

116.2 Petabytes on Tape 4/1/2017

