
# Effect of LEM blind regions on charge collection

Philippe COTTE

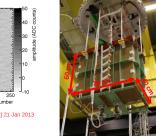
April 12, 2017

#### Main question WA105 LEM geometry





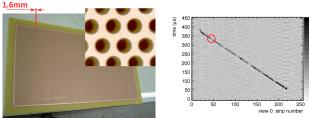
#### Study


Border, screw holes, HV connectors : What is their impact on charge collection and charge resolution?

Philippe COTTE | Effect of LEM blind regions on charge collection

#### Main question Motivation : LAr LEM-TPC




40 × 76 cm<sup>2</sup> readout



Rectangular LEM with 1.6 mm gap between each LEM  $\Rightarrow$  Absence of charge at LEM border

Philippe COTTE | Effect of LEM blind regions on charge collection

A. Badertscher, ArXiv:1301.4817v1 [physics.ins-det] 21 Jan 2013



A. Badertscher, ArXiv:1301.4817v1 [physics.ins-det] 21 Jan 20.

#### 200L DLAr LEM-TPC





- 1. Simulate the electric field close to the border, screw holes and HV connectors (done with ANSYS)
- 2. Simulate the electrons drifting toward the LEM in those region, compute collection efficiency depending on initial electron position (done with GarField)
- 3. Create an efficiency map for a typical LEM of  $49.95 \times 49.95 cm^2$  (done with Root)
- 4. Simulate events in  $6 \times 6 \times 6$  and compare charge and charge resolution with/without efficiency (done with QScan)

## Geometry : example of 2D model

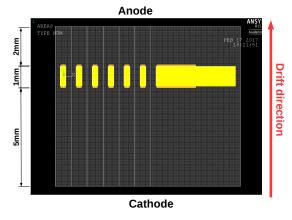
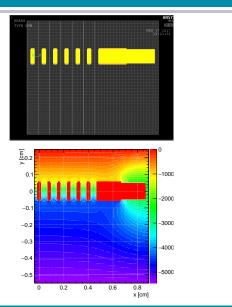
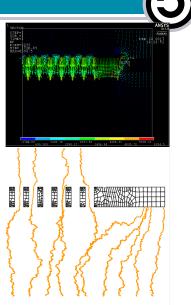
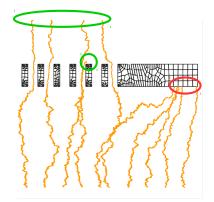




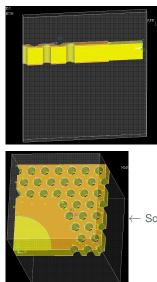

Figure: 2D modelisation of a LEM border

## Geometry : example of 2D model field, potential and drift of 10 electrons

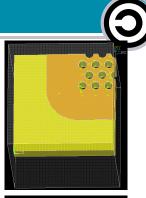


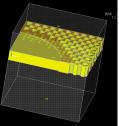



## Calculating transmission efficiency



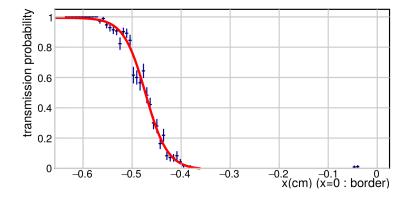

End point of electron path used as condition :


- Consider any electron reaching amplification zone as collected
- Kill electron reaching bottom LEM on dead zone (border, srew, HV connector)
- Compare initial position of all electrons to initial position of collected electrons (ratio of histograms collected/generated)



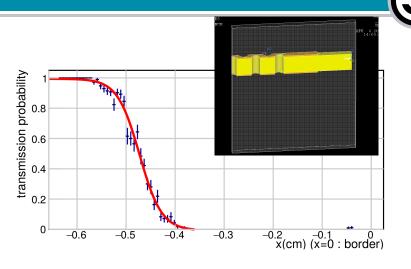

# Geometry : 3D models Border, corner, screw hole and HV connector




Screw Hole HV connector  $\rightarrow$ 





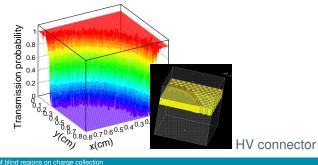

## Drift of 10000 electrons on LEM border

uniformly distributed at bottom of the geometry



## Drift of 10000 electrons on LEM border

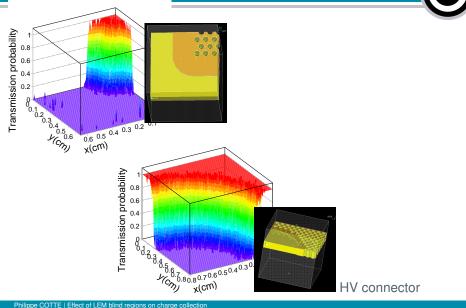
uniformly distributed at bottom of the geometry




Fit function :  $\sim arctan(-x)$ 

## Results for 3D models

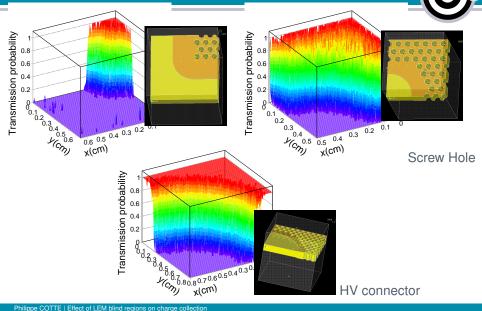
Border, corner, screw hole and HV connector





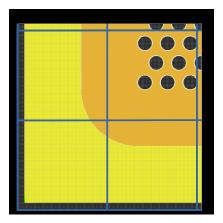

Philippe COTTE | Effect of LEM blind regions on charge collection

## **Results for 3D models**


Border, corner, screw hole and HV connector



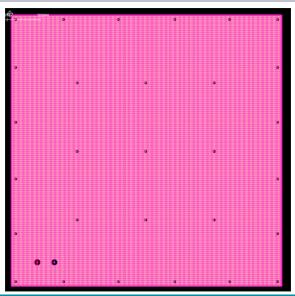
Philippe COTTE | Effect of LEM blind regions on charge collection


## **Results for 3D models**

Border, corner, screw hole and HV connector

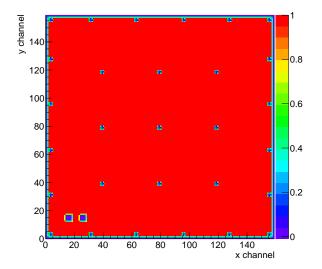


## Computing efficiency in pixels



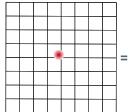


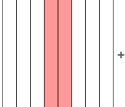

 Pixel efficiency computed by integrating histogram pixel by pixel (pixel=3.125 × 3.125mm<sup>2</sup>)

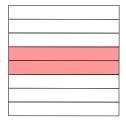








## Efficiency map for one LEM



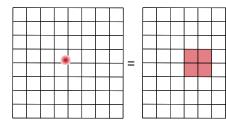




#### Modification of Qscan in WA105Soft/crp/src/QProjector.cc

#### Originally :










#### Modification of Qscan in WA105Soft/crp/src/QProjector.cc



#### Now :



And then again split in strips (since it is what the detector will eventually give us)

## Simulating events with Qscan



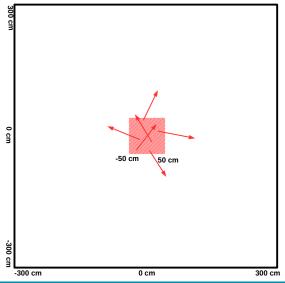
#### Possibility to specify efficiency pixel by pixel (computation time +15%)

## Simulating events with Qscan



- Possibility to specify efficiency pixel by pixel (computation time +15%)
- Efficiency map read as TH2D once for each event (no impact on computation time)

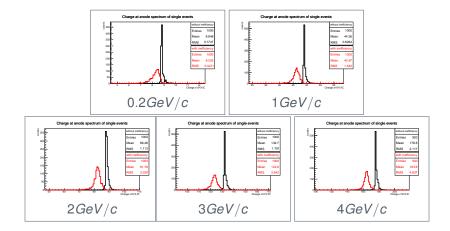


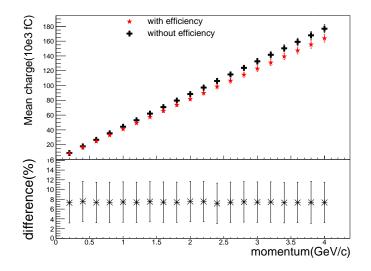

- Possibility to specify efficiency pixel by pixel (computation time +15%)
- Efficiency map read as TH2D once for each event (no impact on computation time)
- Possibility to record charge with or without efficiency map

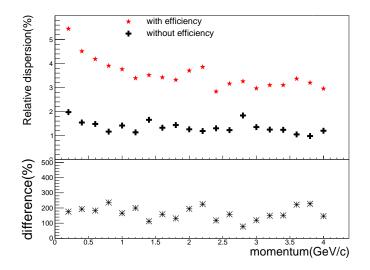


- Possibility to specify efficiency pixel by pixel (computation time +15%)
- Efficiency map read as TH2D once for each event (no impact on computation time)
- Possibility to record charge with or without efficiency map
- Compare charge distribution with "perfect" (no efficiency map) and "real" (with efficiency map) LEM for different particles and momenta

## 1000 particles simulated


Electrons, muons, kaons, pions and protons

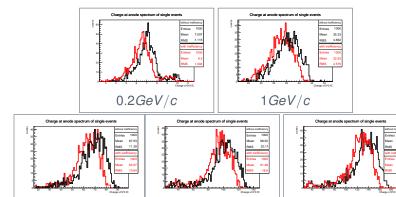



- Initial momentum fixed
- ► Direction random in 4π
- Initial position at z = 0
- ► and (x, y) ∈ [-50; 50]cm

#### Results Charge distribution for electrons at different momenta

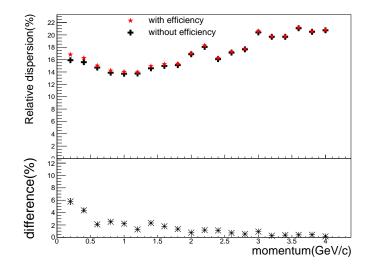






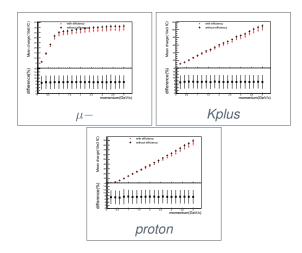

#### Results Charge distribution for negative pions at different momenta




4GeV/c

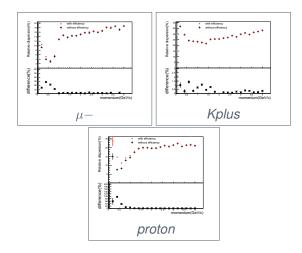


3GeV/c


2GeV/c






#### Results Charge difference of different particles





#### Results Charge dispersion of different particles









#### Electrons can be lost completely on blind regions





#### Electrons can be lost completely on blind regions

 Effect on resolution small on most particles above 1 GeV/c Except electrons : resolution doubled





#### Electrons can be lost completely on blind regions

- Effect on resolution small on most particles above 1 GeV/c Except electrons : resolution doubled
- Effect on total charge can be well known

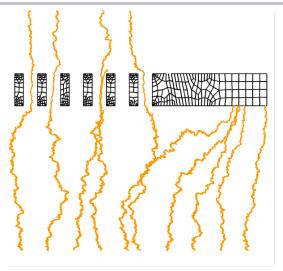
### Conclusion



#### Electrons can be lost completely on blind regions

- Effect on resolution small on most particles above 1 GeV/c Except electrons : resolution doubled
- Effect on total charge can be well known
- ► Dead zone between LEMs : 4 + 4 + 0.5 = 8.5mm, screw holes : 6mm, HV connectors : 10mm ⇒ vertex happening in those zones can be difficult to analyse, especially showers






# Effect of LEM border on the path of drifting electrons

Philippe COTTE | Effect of LEM blind regions on charge collection

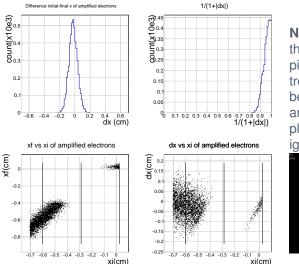
## Electron deviation due to border

Drift of 10 electrons on border

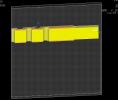



 $\Rightarrow$  Border can deviate electrons: impact on amplified electrons?




- Simulate LEM region without blind region and drift electrons on it
- Compute  $dx = x_{initial} x_{final}$  of each electron
- Do the same on border region and compare

## Electron deviation due to border


#### Area without blind region



# Electron deviation due to border



**Note:** The cloud on the left of the bottom pictures are electrons that passed between two LEMs and did not get amplified. They can be ignored.







- Borders induce a clean cut in the spatial charge distribution
- The deviation of the path is at most of 0.2 cm, inferior to strip size (0.3125 cm)
- Same thing expected for other blind regions





#### Thank you!

Philippe COTTE | Effect of LEM blind regions on charge collection