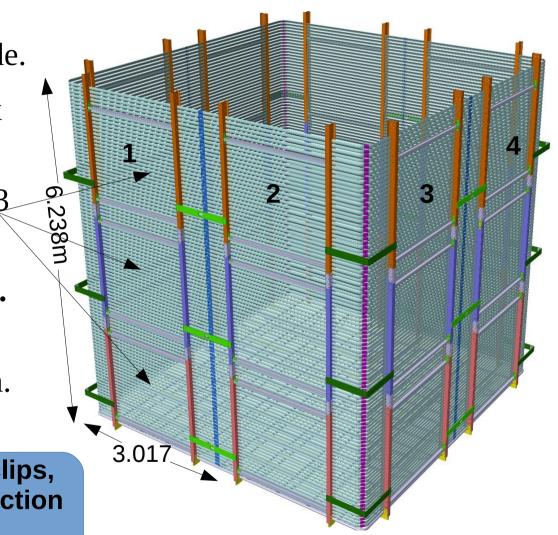
Design of the HV Divider Board for Proto-DUNE Dual Phase Field Cage

Animesh Chatterjee

M.Hibbard, J. Yu, D.Zenger, Mathew Rapp University of Texas at Arlington

C.Cantini, A.Gendotti,S. Murphy, L.M. Bueno ETH Zurich F. Pietropaolo CERN

April 12, 2017


Outline

- Motivation
- Modification on the board design
- Module zero construction plan
- Conclusion

Overview of DP-FC

- Total 8 modules.
- 2 modules in each detector side.
- Size of each module is 6.2m x 3.0 m.
- Each module is composed of 3 sub-modules.
- Each module has 98 profiles.
- Center to center distance between two profiles is 60mm.

Profiles are connected with clips, Continuity of Electrical connection across 4 sides of the Module.

HV Divider Board: Motivation

- To generate uniform electric field of 500 V/cm across the entire drift volume.
- Use the printed circuit board
 - Easy handling and installation, robust mechanical and electrical connections
 - perform and survive in LAr for a long time.
 - ample redundancy
- Important issues before the design of the board:
 - High Voltage power supply.

- Total number of profiles, or total number of gaps (stages) including the connection with cathode.

- Center to center distance between two profiles (60 mm).
- Current flow across the circuit.

Summary from Last meeting

- Designed has been approved and signed off.
- Few Modifications:

- Initially the detector will run with -300 kV, then in run2 it will run with 600 kV power supply without any major reassembly of the detector.

- Some modification require for operating the board at 600 kV.

- modification on the fixing slot of the Divider Board.
- Changes in 600 kV :

- Current will be double (12 uA) with two boards in parallel.

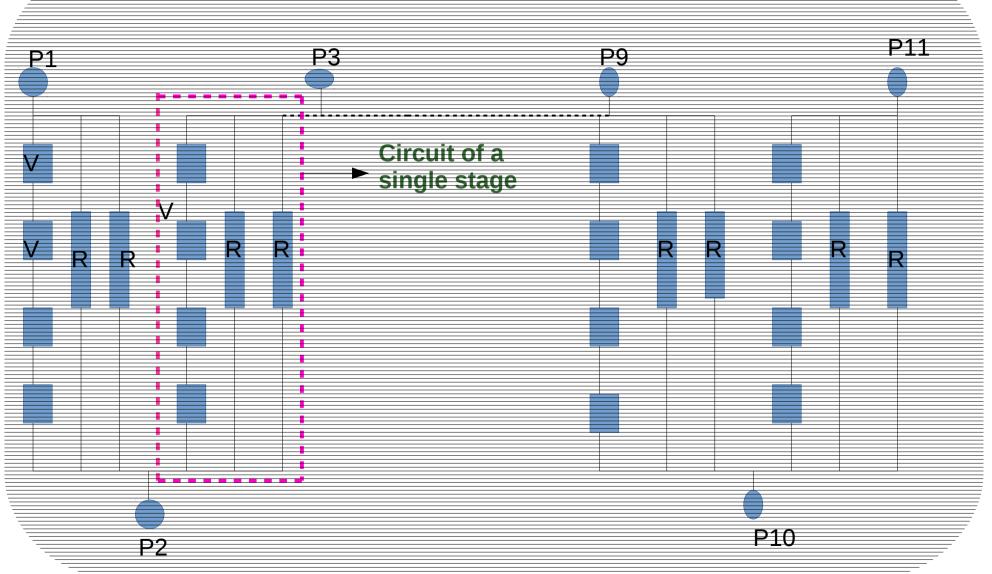
- Voltage difference in each stage will be 6 kV.

Modifications

• Changes in the components

- Resistors with higher voltage and power rating.

- We will use THICK FILM RESISTOR, 2GOHM, 2.5W, 1%, part number SM108032007FE.


- Voltage rating of the resistor is 20 kV.

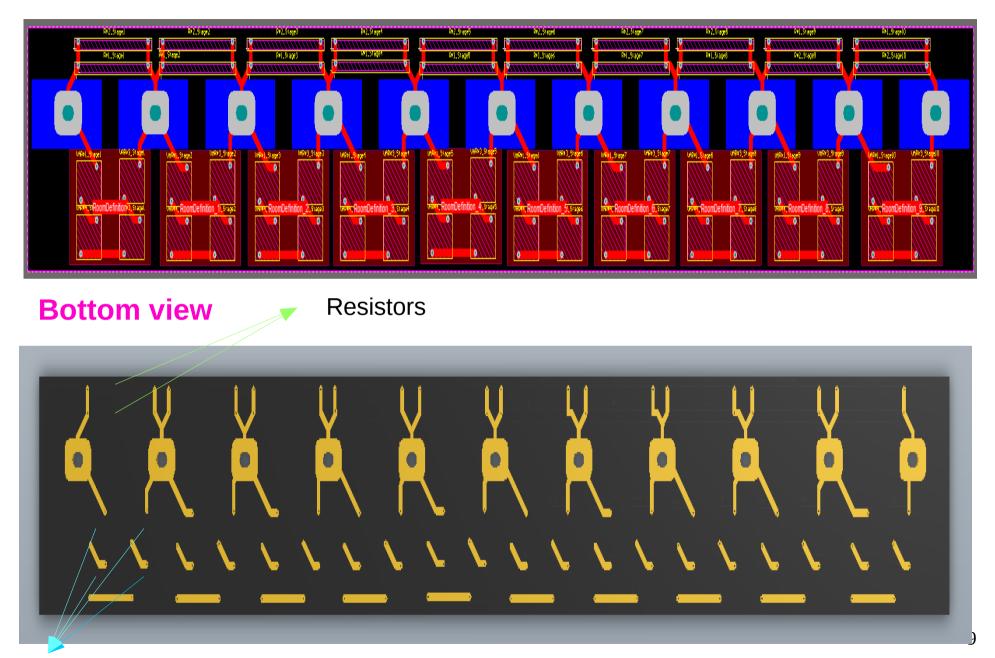
- We have to use 4 varistors in series each with clamping voltage 1.8 kV, because in case of 3 varistors in series, the total clamping voltage is less than 6 kV.

- Use the same varistors, add one more in each stage.

• modification on the fixing slot of the Divider Board.

Modified Schematic diagram of the HV Divider Board

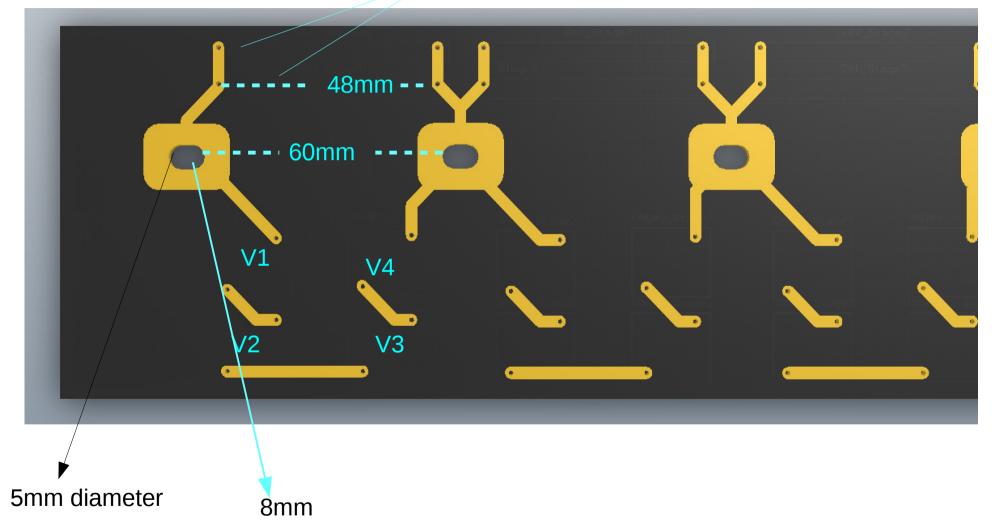
R= 2 Gohm, V= varistors, P1, P2, .. P11 connections with each profile


Modified3D image of the Divider Board:Top layer

- Divider board is 3 mm thick to have strong mechanical strength
- Each stage will be electrically connected through copper tap, M4 screws and a metal washer from top

Two 2G Resistors 4 Varistors in series

Copper tap Connections with the profiles


Top and Bottom view

4 Varistors in series

Bottom layer : Zoom

Resistors

Testing and Production Plan of electrical components

Test the divider boards, resistors, and varistors both in warm and cold.

• Testing plan

Resistors :

- Measure the resistance from I-V curve both in warm and cold for each individual resistors, repeat the process for 3 times.

- Select the appropriate one within its tolerance.
- Test the varistors, divider board

Status

- Placed order for Resistors and varistors, few of them arrived.
- Placed an order for divider board.
- In the stage to start testing components.

Module zero production status

- Clean room conversion complete. Took over the occupancy.
- All tools purchased, including the construction stand.
- Profiles are at DFW customs, awaiting for customs clearance. CERN needs to take an action quickly.
- Screws and slip nuts ready for purchase.

Module zero production status

- I-beams are being produced at two different vendors - Rochling and EFI.
- Expected delivery from Rochling soon.
- UTA student studied material comparison for Ibeams, Liberty P looks promising.
- DPFC mechanical and electrical design and production review on April 24-25 at CERN.

	DEF I	Crea tive P.	Lib ert y P.	Ha ysi teª	Gla stic
24hr Water Absorption (% max)	0.45	0.6	0.6	0.2	0.3
Density (lb / in³)	0.62 - 0.07	0.06- 0.07	0.0 656	0.0 65	0.0 65
Coefficient of Thermal Exp. (in/in/C) x 10 ⁶	5	8	8	-	-
Dielectric Strength:					
LW KV / in	35	40	35	60	45
PF volts / mil	200	200	200	55 0	200
Dielectric Constant (@60Hz)	5	5.2	-	4.4	-

- Board design has been signed off.
- Modifications of the board and the components for 600 kV power supply complete.
- Module zero production in progress.
- Test all the electrical components and the board in warm and cold condition.
- Complete the production of the modules and board within time-schedule.