
Science Board Meeting

12 / 04 / 2017

Laura Zambelli (LAPP)

Cosmic Ray Track Reconstruction
ClusFilter

1

Reconstruction Flow in QScan

2

• Hit Finding
- For each channel, compute the pedestal mean & RMS
- If signal fluctuates a lot wrt to pedestal, considered as a hit

In the 3x1x1 : 1280 channels with 1667 time bins
In the 6x6x6 : 7680 channels with 10000 time bins

0 100 200 300 400 500
0

50

100

150

pedestal

threshold

ROI ROI

time bin

A
D
C

co
u
n
t

0 100 200 300 400 500

0

50

100

150

time bin

A
D
C

c
o
u
n
t

0 100 200 300 400 500

0

50

100

150

pedestal

threshold 1

threshold 2

time bin

A
D
C

c
o
u
n
t

ped.

hit 1

hit 2

hit 3

- Hit charge defined as bin integral in the hit time window + pads on each side (when possible)

Compute pedestal mean & RMSWaveform Defines hits

Starts with initial guess on the pedestal,
and defines ROIs.
Refine the pedestal & ROIs with multiple
loops on the whole waveform.

threshold 1 defines start & stop of a hit
if multiple hits close by, a threshold 2 is
defined wrt hit maximum

Reconstruction Flow in QScan

3

• Clustering
- Found hits are ordered in increasing channel number and, within a channel in increasing time (done for
each CRM in each view)
- Cluster together close-by hits (NNCluster)

channel

tim
e

A

B

xA xB

�x

�A

�B

t
min

t
max

conditions for hit A and hit B to clustered together :

�x < "

x

[= 2 channels by default]

and

t

max

� t

min

< �

A

+ �

B

+ "

y

[= 2 time bins by default]

gray : unclustered hits
1 colour = 1 cluster

Examples

→ The clustering is CPU time consuming due to multiple loops on the found hits

Reconstruction Flow in QScan

4

• Track Finding
- From clusters, three algorithms available :

Hough Transformation
Imagery technique to find lines in a set of points.

TrackBuilderSm
Very naive track builder which assumes that one cluster = one track.  
Gather all the hits together and smooth them to make a track.

TrackBuilderMTC
Use Kalman-Filter from the hits in the cluster to build tracks. See Slavic’s presentations at previous
SB for more details

Position (cm)
75 76 77 78 79 80 81 82 83 84

D
rif

t D
 (c

m
)

21

22

23

24

25

26

27

28

29

30

dummy_axishisto

line found so far
prediction from →
the last point added

to the filter

← hits
↓ seeding

All hits in this
area are tested

Alternative CR Track finder ‘ClusFilter’ - general idea

5

The algorithm uses the fact that the hits are ordered in increasing channel number, and within a channel by
increasing arrival time.

The code do not need clusters, only found hits.

Seeding : Start with 3 neighboring points (each hits are in a different channel) and fit a line using least
square method. If the correlation is good enough (≧0.8, hardcoded so far) start the track filtering

Filtering : Search for neighboring hits in increasing channels [default is 5 channels apart] in some time
windows [default is ± 2cm*(Δchannel)].  
For each hit, compute: 
 
 
and considered if Χ2 < cut value [default is 10].

�2 =
(ypredicted � ymeasured)2

�2
y,data + �2

y,filter

NB : The time window search definition
implies that no tracks with a slope (Δy/Δx)
higher than 6.4 (2/0.3125) can be found

Alternative CR Track finder ‘ClusFilter’ - general idea

6

Considered hits are then ordered in channel and Χ2.

The closest and ‘best’ one is used for updating the filter.
If no hits can be considered, the filtering stops and the track is constructed if the number of attached hits is
high enough [default is 20 hits]. 

Using the attached hits to the track, a backward filter is performed to get the initial and final slope of the
track.
 
The filtering is a Kalman-like filter (developped by Pierre Billoir, NIM A225 (1984) 352-366, mathematically
equivalent to Kalman Filter)
It’ s a 2D filtering, at each new point the slope and y position is updated, taking into account multiple
scattering given an assumed track momentum [default is 1 GeV] 

Alternative CR Track finder ‘ClusFilter’ - Examples

7

Tracks found (one CRM) Unmatched hits

one line = one track (colors are random)

Track Merging

8

Tracks found & merged within CRM • Within a CRM, try to merge broken lines.
• In between CRM, try to stitch together tracks crossing
several CRM.

2 tracks are merged together if the end-point distance is
shorter than a distance [default is 5 cm] - can handle
separated or superimposed end points -
and if their slopes are compatibles within a certain number
of sigma (slope error) [default is 5σ]

All CRMs (view0) - no global merging All CRMs (view0) - global merging

10 tracks merged together

merged

Alternative CR Track finder - issues

9

Position (cm)
170− 160− 150− 140− 130−

Tr
av

el
le

d
D

is
ta

nc
e

(c
m

)

50

100

150

200

250

dummy_axishisto

Position (cm)
255− 250− 245− 240− 235− 230− 225− 220− 215−

Tr
av

el
le

d
di

st
an

ce
 (c

m
)

0

20

40

60

80

100

120

dummy_axishisto

Position (cm)
150− 140− 130− 120− 110−

D
is

ta
nc

e
tra

ve
lle

d
(c

m
)

250

300

350

400

450

500

550

600

dummy_axishisto

A few issues remains, although most of
the tracks are correctly found.

↑Due to some allowance in track
bending from MS, sometimes the filter
gets the wrong direction when 2 tracks
with similar slopes crosses each other

Part of the track is missing→

In crowded areas, random tracks can be found↓

+ vertical tracks

Testing code CPU performances (in the 6x6x6)

10

4 GeV through going muons
~900 hits found per view

8 ms cosmic rays
~27 000 hits found per view

8 ms cosmic rays + beam halo
~58 000 hits found per view

8ms beam halo
~34 000 hits found per view

CPU time for reconstruction (in the 6x6x6)

11

Time in seconds
4 GeV through going µ

[averaged for 100
events]

8 ms CR
[averaged for 50 events]

8 ms Beam Halo
[averaged for 50 events]

8 ms CR + beam halo
[averaged for 20 events]

Mean number of hits
per view ~900 hits ~27 000 hits ~34 000 hits ~58 000 hits

Hit Finding* 8.6 s
efficiency = 91%

13.2 s
efficiency = 93%

12.8 s
efficiency = 92%

13.9 s
efficiency = 82%

Hit Finding + Clustering 8.4 s
efficiency = 95%

32.1 s
efficiency = 97%

52.1 s
efficiency = 97%

87.7 s
efficiency = 97%

Hit Finding + Clustering
+ TrackBuilderMTC

8.9 s
efficiency = 93%

76.1 s
efficiency = 99%

71.5 s
efficiency = 98%

349.9 s
efficiency = 98%

Hit Finding + ClusFilter 8.3 s
efficiency = 88%

19.6 s
efficiency = 95%

20.1 s
efficiency = 95%

31.5 s
efficiency = 92%

* voxel information (matching hit mc truth) commented due to memory
mapping problem when occupancy is getting too big (to be investigated) efficiency is cpu efficiency

NB : Time given here are not absolute number, but should be considered as trends

Comparison of track reconstruction - through going µ

12

slope
20− 15− 10− 5− 0 5 10 15 20
0

5

10

15

20

25

30

35

40

Initial Slope (View0)Initial Slope (View0)

slope
20− 15− 10− 5− 0 5 10 15 20
0

5

10

15

20

25

30

35

40

Final Slope (View0)Final Slope (View0)

slope
20− 15− 10− 5− 0 5 10 15 20
0

5

10

15

20

25

30

35

40

Initial Slope (View1)Initial Slope (View1)

slope
20− 15− 10− 5− 0 5 10 15 20
0

5

10

15

20

25

30

35

Final Slope (View1)Final Slope (View1)

 length (cm)
0 100 200 300 400 500 600 700 800

0

1

2

3

4

5

Track Length (View0)Track Length (View0)

 length (cm)
0 100 200 300 400 500 600 700 800

0

1

2

3

4

5

6

Track Length (View1)Track Length (View1)

TrackBuilderMTC
ClusFiltering

For clarity, only tracks longer than 15cm are considered here

Comparison of track reconstruction - 8ms CR

13

slope
20− 15− 10− 5− 0 5 10 15 20
0

50

100

150

200

250

300

350

Initial Slope (View0)Initial Slope (View0)

slope
20− 15− 10− 5− 0 5 10 15 20
0

50

100

150

200

250

300

350

Final Slope (View0)Final Slope (View0)

slope
20− 15− 10− 5− 0 5 10 15 20
0

50

100

150

200

250

300

350

Initial Slope (View1)Initial Slope (View1)

slope
20− 15− 10− 5− 0 5 10 15 20
0

50

100

150

200

250

300

Final Slope (View1)Final Slope (View1)

 length (cm)
0 100 200 300 400 500 600 700 800

0

50

100

150

200

250

300

Track Length (View0)Track Length (View0)

 length (cm)
0 100 200 300 400 500 600 700 800

0

50

100

150

200

250

Track Length (View1)Track Length (View1)

TrackBuilderMTC
ClusFiltering

For clarity, only tracks longer than 15cm are considered here

 length (cm)
0 100 200 300 400 500 600 700 800

0

20

40

60

80

100

120

140

160

180

Track Length (View0)Track Length (View0)

 length (cm)
0 100 200 300 400 500 600 700 800

0

20

40

60

80

100

120

140

160

180

200

Track Length (View1)Track Length (View1)

Comparison of track reconstruction - beam halo

14

slope
20− 15− 10− 5− 0 5 10 15 20
0

200

400

600

800

1000

Initial Slope (View0)Initial Slope (View0)

slope
20− 15− 10− 5− 0 5 10 15 20
0

200

400

600

800

1000

Final Slope (View0)Final Slope (View0)

slope
20− 15− 10− 5− 0 5 10 15 20
0

500

1000

1500

2000

2500

Initial Slope (View1)Initial Slope (View1)

slope
20− 15− 10− 5− 0 5 10 15 20
0

500

1000

1500

2000

2500

Final Slope (View1)Final Slope (View1)

TrackBuilderMTC
ClusFiltering

For clarity, only tracks longer than 15cm are considered here

Comparison of track reconstruction - 8ms CR + halo

15

slope
20− 15− 10− 5− 0 5 10 15 20
0

50

100

150

200

250

300

350

400

Initial Slope (View0)Initial Slope (View0)

slope
20− 15− 10− 5− 0 5 10 15 20
0

50

100

150

200

250

300

350

400

Final Slope (View0)Final Slope (View0)

slope
20− 15− 10− 5− 0 5 10 15 20
0

100

200

300

400

500

600

700

800

900

Initial Slope (View1)Initial Slope (View1)

slope
20− 15− 10− 5− 0 5 10 15 20
0

100

200

300

400

500

600

700

800

900

Final Slope (View1)Final Slope (View1)

 length (cm)
0 100 200 300 400 500 600 700 800

0

20

40

60

80

100

120

140

160

Track Length (View0)Track Length (View0)

 length (cm)
0 100 200 300 400 500 600 700 800

0

20

40

60

80

100

120

140

160

Track Length (View1)Track Length (View1)

TrackBuilderMTC
ClusFiltering

For clarity, only tracks longer than 15cm are considered here

Reconstruction comparison - CR + beam Halo

16

TrackBuilderMTC

Hits attached to a track
Track Path
Unmatched hits

Reconstruction comparison - CR + beam Halo

17

ClusFilter

Hits attached to a track
Track Path
Unmatched hits

Alternative CR Track finder - δrays and vertical tracks

18

Tracks found (one CRM)

Corresponding unmatched hits

Vertical track finder :
From the unmatched set of hits, try to build clusters by
rotating the image (x→y)
Then if a large cluster is found, try to filter it using the
same algorithm, keeping in mind that the image is rotated.
(i.e. try to find a line with equation x = a*y + x0)

δ-rays finder :
Loop on hits attached to tracks and search for nearby
unmatched hits using (very tight) NNClustering
method.
If the build cluster is small enough [default is less than
15 hits] consider it as a delta ray belonging to the track

19

Alternative CR Track finder - δrays and vertical tracks

46 tracks found after merging

55 tracks found when searching for vertical tracks

Hits attached to a track
Track Path
Delta Rays
Unmatched hits

: Problematic case, when hits belonging to a vertical
tracks are misaligned as a delta-rays

: new tracks

Reconstruction with Space Charge Effect

20

8 ms CR, uniform field 8 ms CR, field map with 10% IBF

55 tracks found 52 tracks found

→The code seems to handle track distortions due to space charge effect

One line color = one track found

Recotask parameters for ClusFilter

21

To be added in the recotask config file

[ClusFilter code is not yet committed though!]

← Parameters for ClusFilter code

← Parameters for Track Merging (common for all algorithms)

Ideas for future improvements

22

For example, for a CR events :
Hit Finding + ClusFilter : ~20 s
Hit Finding + ClusFilter + δrays + vertical tracks finders : ~64 s
↳ Huge amount of time spent to find δ-rays and vertical track (due to multiple loops on the unmatched
hits) - to be improved !

For track merging within CRM, one could add some spatial constrains to merge only "mergable" tracks. This
can become a problem when there is beam halo, as many collinear tracks crosses the detector.

Develop 3D tracks, by merging in between views. Simple criteria is comparing end points (in time) of tracks
with CRM constraints, but more sophisticated technique can be found.

Conclusion and to-do list

23

- An alternative track reconstruction code has been developed, and show faster CPU performances wrt to
other algorithms for comparable results.

- ClusFilter code is not good at finding vertical tracks, a first simple implementation tries to fix it although it
needs further improvements.

- A detailed code reconstruction efficiency is needed (like nb of tracks found, slopes, track charge
reconstructed, …)

- 3D tracking is the next step.

- 3x1x1 track reconstruction performance is also needed

- Although ClusFilter is faster, ~30 s to reconstruct a single CR+beam halo event is still too long - to be
further improved !

