Electron beam experiments at FAST in 2017

A. Halavanau, J. Hyun, P. Piot, C. Thangaraj and T. Sen

April 10, 2017

Electron beam experiments at FAST in 2017

Outline

Introduction and updates Experiments at FAST in 2016

Canonical Angular Momentum (CAM) dominated beams Theoretical background Beam moments gymnastics Round-to-flat transformation

Experimental plan for Run 2017
 Flat beam generation
 THz radiation generation

4 Additional materials

Introduction

IOTA/FAST facility - high-brightness 300 MeV electron beams

- Under comissioning (linac will be ready in 2017)
- Collaboration with Northern Illinois University
- Several experiments planned in 2017

Snapshot of recent work

Future experiments

- Magnetized and flat beam generation
- Flat beam compression
- THz radiation generation from compressed flat beams

1.3 GHz SRF accelerating cavity transport studies:

- Analysis and Measurement of the Transfer Matrix of a 9-cell 1.3-GHz Superconducting Cavity // arXiv:1701.08187; accepted in Phys. Rev. Accel. & Beams (2017)
- A High-Level Python Interface to Fermilab ACNET Control System // Proc. of NAPAC16, in press (2016)

Channeling radiation experiment:

 Commissioning and First Results From Channeling Radiation At FAST // Proc. of NAPAC16, in press (2016)

UV laser shaping experiments:

- Generation of homogeneous and patterned electron beams using a microlens array laser-shaping technique //FERMILAB-TM-2634-APC
- A Simple Method for Measuring the Electron-Beam Magnetization // Proc. of NAPAC16, in press (2016)

Simulations and potential experiments:

- Cascade Longitudinal Space-Charge Amplifier at FAST// Nucl. Instrum. Meth A 819, 144 (2016)
- Numerical Study of Three Dimensional Effects in Longitudinal Space-Charge Impedance// Proc. of IPAC15, p. 1853 (2015)

and MORE...

FAST beamline

- FAST injector 1.3 GHz SRF linac
- Charge range: 10 fC 3.2 nC per pulse (Cs:Te cathode)
- Nominal bunch length 5 ps
- Includes chicane and skew-quadrupole adapter (RTFB)
- Detailed description of the facility: Antipov, S., *et al*, JINST, 12, T03002 (2017).

Emittance measurements summary

Electron beam emittance was meassured via simple geometrical $(\epsilon = \frac{\sigma_1}{z} \sqrt{\sigma_2^2 - \sigma_1^2})$ and quadrupole scan technique

NAPAC16: TUPOA19: Green, A. MS Thesis, NIU (2016)

Charge, Q	$\epsilon_{\it nx}$, $\mu{\rm m}$	$\epsilon_{\it ny}$, $\mu{\rm m}$
<1 pC	0.25 ± 0.1	0.3 ± 0.1
50 pC	1.6 ± 0.2	3.4 ± 0.1

- Emittance is not yet optimized (will be)
- Quadrupole scan data analysis in progress; will be reported separately
- Multislit method will be used to confirm/update

New multislit tool

Multislit Emittance Summary ---- 2017-03-08 15:23:43

D. Edstrom, FAST meeting 03/10/2017 slides

A. Halavanau, J. Hyun, P.

Why CAM beams?

- Conventional application electron cooling (Derbenev, Ya., UM-HE-98-04-A); proposed for JLEIC and other facilities
- ② Emittance partitioning via flat beams (interest of ILC group)
- Supressing microbunching instabilities in IOTA (collaboration with R. Li, JLab)
- Several possible radiation experiments (dielectric structures, microundulators, channeling, etc.) can be done at FAST

CAM beams production at FAST is an important first step

Motivation and goals

<u>Motivation:</u> flat-beam generation, compression, and application to the generation of tunable THz narrowband radiation.

<u>Goals:</u>

- Produce canonical angular momentum dominated (CAM) beams (pionereed at Fermilab A0)
- Set up and optimize on the fly the round-to-flat beam transformer (RTFB)
- **③** Generate extreme eigen-emittances ratio (> 300) (**NEW**)
- ② Demonstrate compression of flat beam and investigate emittance dilution during the process (NEW)
- Demonstrate the use of flat beam to generate THz radiation using the mask method (NEW)

Busch's theorem

Relativistic Hamiltonian of the particle (m, q, \mathbf{P}) :

$$H = c(m^2c^2 + (\mathbf{P} - q\mathbf{A})^2)^{1/2} + q\phi - mc^2,$$

where ϕ , **A** - scalar (vector) potential. Note, that:

$$-\frac{\partial H}{\partial \theta} = \frac{dP_{\theta}}{dt} = 0,$$

therefore θ is a cyclic variable and P_{θ} is a **constant of motion**.

$$P_{ heta} = \gamma m r^2 \dot{ heta} + q r A_{ heta} = const$$

Conservation of canonical angular momentum or Busch's theorem

CAM conservation

Total canonical angular momentum of a charged particle in symmetric magnetic field is conserved

$$L = \gamma m r^2 \dot{\theta} + \frac{1}{2} e B_z(z) r^2 \tag{1}$$

The norm of $|\vec{L}|$ can be computed as $L = |\vec{r} \times \vec{p}| = xp_y - yp_x$. Redefine as $< L >= eB_{0z}\sigma_0^2$:

$$\mathcal{L} \equiv < L > /2\gamma mc = const$$

where B_{0z} is the field at the cathode, σ_0 is the RMS spot at the cathode and σ is the RMS beam size. The particle total mechanical momentum $\vec{p} = p_r \hat{\mathbf{r}} + p_{\theta} \hat{\theta} + p_z \hat{\mathbf{z}}$ has non-zero $\hat{\theta}$ -component resulting in **CAM-dominated beam**.

CAM-dominated beams

- a) Emittance-dominated beam (ϵ_u)
- b) CAM-dominated beam (magnetization $\mathcal{L} \equiv < L > /2\gamma mc$)
- c) Space charge dominated beam (space charge parameter K)

$$\sigma'' + k_I^2 \sigma - \frac{\kappa}{4\sigma} - \frac{\epsilon_u^2}{\sigma^3} - \frac{\mathcal{L}^2}{\sigma^3} = 0,$$

 $k_I = eB_z(z)/2\gamma mc$ is Larmor wavenumber, $K = 2I/I_0\gamma^3$ is the perveance, I and I_0 are the beam and Alfven current respectively

4D-emittance, ϵ_u

Define 4D-emittance as $\epsilon_{4D} = \epsilon_u^2 = \sqrt{|\Sigma|}$, then:

$$\Sigma_i = \left(egin{array}{cccc} \sigma^2 & 0 & 0 & \kappa\sigma^2 \ 0 & \kappa^2\sigma^2 + {\sigma'}^2 & -\kappa\sigma^2 & 0 \ 0 & -\kappa\sigma^2 & \sigma^2 & 0 \ \kappa\sigma^2 & 0 & 0 & \kappa^2\sigma^2 + {\sigma'}^2 \end{array}
ight),$$

where $\epsilon_u = \sigma \sigma'$ (doesn't depend on κ) and $\kappa = \mathcal{L}/\sigma^2$. Total 4D-emittance is conserved

$$det(J\Sigma - i\epsilon_{\pm}I) = 0,$$

where I and J are respectively unit and symplectic unit matrix.

Emittance ratio

Eigenemittances:

$$\epsilon_{\pm} = \sqrt{\epsilon_u^2 + \mathcal{L}^2} \pm \mathcal{L} \rightarrow \epsilon_+ \approx 2\mathcal{L}; \epsilon_- \approx \frac{\epsilon_u^2}{2\mathcal{L}}$$

Emittance ratio or "flatness":

$$\frac{\epsilon_+}{\epsilon_-} = \frac{4\mathcal{L}^2}{\epsilon_u^2} = \frac{1}{p_z^2} e^2 B_{0z}^2 \frac{\sigma_0^2}{\sigma_0'^2}$$

 $\begin{array}{l} \underline{\text{Example calculation:}} \\ \epsilon_{-} = 0.1 \mu \text{m} \rightarrow \beta_{x,y} \\ \epsilon_{+} = 1.8 \text{mm and } \sigma_{-} = 0.09 \text{mm} \end{array}$

RTFB transfomer

Round-To-Flat Beam transformer

Let the transformer be described by $R'_{RTFB} = Q_3 D_3 Q_2 D_2 Q_1$, where $D_i = \begin{pmatrix} 1 & d_i \\ 0 & 1 \end{pmatrix}$ and $Q_i = \begin{pmatrix} 1 & 0 \\ \pm q_i & 1 \end{pmatrix}$ drift and quadrupole transfer matrix respectively.

Consider three quadrupoles skewed at 45 deg. as $R_{RTFB} = M_{-45}R'_{RTFB}M_{45}$, where M_{ϕ} is rotation matrix

Beam moments gymnastics

Let the RTFB transfomer transport be described by $R = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ A,B,C,D - are 2 × 2 matrices. Then beam matrix $\Sigma_i = \begin{pmatrix} \Sigma_{XX} & \Sigma_{XY} \\ \Sigma_{YX} & \Sigma_{YY} \end{pmatrix}$ is transformed as $\Sigma_f = R\Sigma_i \tilde{R}$. Setting $\Sigma_{XY} = 0$ leads to:

$$A\Sigma_{XX}\tilde{C} + A\Sigma_{XY}\tilde{D} + B\tilde{\Sigma}_{XY}\tilde{C} + B\Sigma_{YY}\tilde{D} = 0$$
(2)

Round beam $\rightarrow \Sigma_{XX} = \Sigma_{YY} = \Sigma_0$ and $\Sigma_C = -\tilde{\Sigma}_{XY}$

Σ -matrix diagonalization

 4×4 matrix R_{RTFB} can be also represented in 2×2 block form as:

$$R_{RTFB} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} a+b & a-b \\ a-b & a+b \end{pmatrix}$$

or in non-rotated coordinate system:

$$R'_{RTFB} = egin{pmatrix} a & 0 \ 0 & b \end{pmatrix}$$

Then rewrite Eq. 2 as: $A\Sigma_0 \tilde{B} + B\Sigma_0 \tilde{A} + A\Sigma_C \tilde{A} + B\tilde{\Sigma}_C \tilde{B} = 0.$

Guess solution $A_+ = A + B$ and $A_- = A - B$ such that $A_- = A_+S$, where S some symplectic matrix (can be defined by Σ_{XX} , Y. Sun PhD thesis, FNAL (2005))

RTFB solutions

FAST quadrupoles: $K = (10.135 \times 40 I_q)/(1.8205 \times p [MeV/c]),$ $L_{eff} = 17 cm$

$$egin{aligned} q_1 &= \pm \sqrt{rac{-d_2(d_T s_{21} + s_{11}) + d_T s_{22} + s_{12}}{d_2 d_T s_{12}}}, \ q_2 &= rac{(d_2 + d_3)(q_1 - s_{21}) - s_{11}}{d_3(d_2 q_1 s_{11} - 1)}, \ q_3 &= rac{d_2(q_2 - q_1 q_2 s_{12}) - s_{22}}{d_2(d_3 q_2 s_{22} + q_1 s_{12} - 1) + d_3(s_{12}(q_1 + q_2) - 1)} \end{aligned}$$

Least-squares method can be used for correcting (q_1, q_2, q_3) for chromaticities and other second order effects

S matrix definition

Matrix S can be defined as correlation:

$$Y = SX \to S = \Sigma_{YX} \Sigma_{XX}^{-1}$$

where X, Y are 2×1 phase space vectors. Alternatively, it can be defined as:

$$S = \pm \frac{1}{|\Sigma_{XX}|} J \Sigma_{XX}^{-1} = \mp \frac{1}{\epsilon} \begin{pmatrix} 0 & -\sigma^2 \\ \kappa^2 \sigma^2 + {\sigma'}^2 & 0 \end{pmatrix}$$

(Proof can be found in Y. Sun PhD thesis, FNAL (2005))

RTFB solutions: Example

$$Case: S = \begin{pmatrix} 0 & -1.28 \\ 0.781 & 0 \end{pmatrix}$$

Model	q_1 , m^{-1}	$q_2, \ m^{-1}$	q_{3}, m^{-1}
Linear model	1.84	-1.2	0.23
Elegant simplex (1000 p.)	1.88	-1.39	0.20

- Linear model gives a good first guess
- Elegant simulations account for chromaticity
- Quadrupole solutions based on statistical properties of the distribution
- Calculation can be done for bunch slice (include analytical SRF cavity model)
- Note it is different from Thrane, E., et al, Proc. of LINAC02

CAM removal example

Fermilab A0 CAM removal demonstration:

Plan for Run 2017

- 1 Optimize round beam emittance via multislit tool
- **2** Start with low B_{0z} value and demonstrate RTFB transformation
- **③** Switch to high B_{0z} configuration and optimize RTFB adapter
- Produce highly asymmetric beams at 2.2 nC (interest of JLEIC group)
- Study flat beam compression in the chicane by using multislits at X107 and X118 locations
- O Proceed to THz radiation generation using multislit in bunch compressor

FAST flat beam experiment

Beam parameters

Parameter	Value	Units
Initial emittance (norm.)	<2	μ m
Beam energy	50	MeV
Slice energy spread	<5	keV
Charge	200	рС
Bunch length	5	ps
Beta-function (CC2 exit)	8	m
Dipole bending radius	0.958	m
Dipole length	0.301	m
Dipole angle	18	degrees
R ₅₆	-0.18	m

Beam-based alignment: Romanov, A., arXiv:1703.09757 [physics.acc-ph]

Beam optics: Example

Measurement algorithm

$\mathsf{MAM} \to \mathsf{CAM} \to \mathcal{L} \to \Sigma \to \mathsf{RTFB} \to \epsilon_+/\epsilon_-$

Assumption:

Canonical Angular Momentum (CAM) is fully trasferred to Mechanical Angular Momentum (MAM)

Two methods of measuring CAM:

- **1** Using multi-slits, observe relative shear of the beamlets
- Osing microlens arrays, produce multi-beam and observe rotation

MAM measurement (A0 method)

Fermilab A0 2004 Run (PRSTAB 7, 123501 (2004)):

Multislit beamlets

Angular sheering

A. Halavanau, J. Hyun, P.

Electron beam experiments at FAST in 2017

MAM measurement (NEW method)

<u>Goal</u>: Measure CAM without inserting any diagnostic hardware in the beamline except YAG viewers Method:

- ① Create electron beam that looks like array of thin dots
- 2 "Magnetize" the beam with solenoids at the cathode
- Infer mechanical momentum by measuring the rotation on the screen

Verification at AWA (ANL)

AWA 2016/17 Run (submitted to PRAB):

Bucking-Focusing solenoids

Multi-beam projected on the cathode, two YAG screens used to determine relative rotation \rightarrow calculate \mathcal{L} .

Method to make multi-beam

References:

FERMILAB-TM-2634-APC (arXiv:1609.01661), FERMILAB-CONF-16-460-APC (Proc. of NAPAC'16)

Experimental results

Multi-beam shearing

- Multi-beams are generated via microlens array laser shaping technique (submitted to PRAB)
- Beam is magnetized at the cathode and observed at two locations
- Angle of rotation and beamlet spacing is calculated
- $L = \frac{p_z}{D} \left[\left(\frac{n}{2} a_1 \right) \right]^2 (m \sin \theta)$, *n* is number of beamlets, a_1 beamlet pitch, $m = a_2/a_1$ is the magnification, θ is skew angle.

Experimental results cont.

Resulting value of B_{0z} compared with IMPACT-T simulations

- Easy setup (laser only)
- Rough estimate even with one YAG screen
- Due individual beam dynamics of each beamlet (30 fC), error bars are big (can be reduced)
- Improvement: use only central portion of the beamlet formation

Comparison and verdict

- Both methods provide a way of measuring *L*, so the resulting settings for RTFB can be computed
- Method 1 is *default* for Run 2017 (assuming hardware installation is completed)
- Method 2 verified experimentally (details in Halavanau, A., FERMILAB-CONF-16-460-APC)
- Implementation of Method 2 at FAST is relatively straightforward

Flat beam conclusions

- **1** 20 nm horizontal emittance (below thermal) at FAST
- Analytical model for RTFB with online optimization via Elegant
- Start-to-end full bunch simulations on NIU GAEA cluster (work in progress)
- Parameter space study via IMPACT-T on NIU NICADD cluster (work in progress)
- **5** Possible neural network RTFB optimizer (with A. Edelen)

Round beam compression

Bunch compressor

- Beam is focused by triplet (Q1, Q2, Q3) into the chicane
- Multislit mask (MS) is inserterd to introduce energy modulation
- Energy modulation is converted into density modulation
- Slit spacing is in THz range
- FAST has interferometer and detector installed at X121 location

Theoretical considerations

Bunching factor: $b(\omega) = \frac{1}{N} |\sum_{n} \exp(-i\omega t_{n})|$. N - total number of particles, n - particle index number. Radiation spectrum:

$$\left(\frac{d^2W}{d\omega d\Omega}\right)_{total} = [N + N(N-1)b(\omega)^2] \left(\frac{d^2W}{d\omega d\Omega}\right)_e,$$

where $\left(\frac{dW}{d\omega d\Omega}\right)_e$ represents the single-electron radiation spectral fluence associated to the considered electromagnetic process (*Transition Radiation*).

Further analytical consideration in progress

Single bunch contribution

- Lower emittance results in enhancement and detection of:
- With existing detector (up to 3.5 THz)
- With bolometer (10 THz and more)

Frequency-domain LPS diagnostics

LPS simulations

LPS simulations

Energy chirp can be used as a parameter knob

A. Halavanau, J. Hyun, P.

Electron beam experiments at FAST in 2017

- **1** CAM beam generation is a byproduct with many outcomes
- PAST flat beam configuration can be used for numerous radiation generation experiments
- THz radiation generation using multislits in the chicane will be attempted during Run2017
- Analytical considerations for RTFB transfomer and flat beam compression are in progress
- **5** Various tools and instruments developed and will be reused

Acknowledgements:

- P. Piot (NIU, Fermilab) for supervising this research
- J. Power (ANL, AWA), Q. Gao (Tsinghua U.) and G. Ha (POSTECH) for their significant contribution to the MLA research
- D. Ratner and S. Li (SLAC) for interest in MLA applications
- A. Romanov (Fermilab) for his help with beam alignment at FAST and useful comments
- A. Valishev and V. Shiltsev (Fermilab) for valuable suggestions

Thank you for your attention!

MPI transmission

1.3 GHz SRF transport summary

Accelerating cavity properties were studied during Run2016

Conclusions:

- Chambers' model is accurate on FAST energy scale (34 MeV)
- HOM coupler kick has parametric dipole component
- Beam-based alignment can be done via minimization procedure (experimentally confirmed for CG-method)

Outcomes:

- Better understanding of low energy round beam dynamics
- Improved analytical model of RTFB transformer
- Tools (pyACL)

Cavity measurements

Channeling radiation summary

(left) Braking radiation spectrum of AI; (right) Diamond (C - 110)response to electron beam

- First attempt at FAST
- Oetector alignment procedure has to be improved (will be)
- 3 Acquisition algorithm has to be improved (will be)