Quantum computing technology for particle detection

D. Bowring, S. Chattopadhyay, A. Chou, A. Sonnenschein, W. Wester (Fermilab) A. Dixit, D. Schuster (U. Chicago)

Detectors for Science Working Group Pre-Meeting 2

25 April 2017

Locally coherent oscillation of QCD vacuum angle θ **about the** CP-conserving minimum.

$$
\theta(x, t) = \theta_{\text{max}} e^{i(kx - m_a t)}
$$
, with $\theta_{\text{max}} \sim 10^{-19}$

■ While WIMPs are point-like and suited to bolometry, sub-eV axions are field-like and require unique detector strategies.

QCD axions: well-motivated, but the mass is not well-constrained

ADMX 500 MHz - 1 GHz "haloscope"

- \Box $\mathcal{L}_{a\gamma\gamma} = g_{a\gamma\gamma} \mathbf{E} \cdot \mathbf{B}$ $P_{a\gamma\gamma}=g_{a\gamma\gamma}^2\frac{\rho_0}{m_s}$ $\frac{\rho_0}{m_a} B_0^2$ VC_{nmℓ} Q_L $\sim 10^{-23}$ W
- Current haloscope experiments looking at \leq 2 GHz and $~\sim$ 6 GHz.
- SN1987A give us an upper limit $m_a \sim 250$ GHz...

$$
\blacksquare \ P_{a\gamma\gamma} = g_{a\gamma\gamma}^2 \frac{\rho_0}{m_a} B_0^2 V C_{nm\ell} Q_L
$$

■ To boost signal power, you can:

- **■** increase Q_L (but $Q_0 = 10^6 \sim$ axion linewidth, and superconductors are not easy to use in $B_0 \sim 10$ T)
- increase B_0^2 V
- increase form factor $C_{nm\ell}$ via clever cavity design
- Alternative approach: lower noise rates!

Axion Dark Matter eXperiment layout

- Gavity operates at $O(100)$ K
- **Superconducting electronics package (microstrip squid** amplifier) in a field-compensated region
- Warm electronics: heterodyning, etc.
- This approach is ok up to $O(10)$ GHz, beyond which we run into the single quantum limit.

We need qubits to beat noise-limited linear amplifiers.

- **EXT** Linear amplifiers suffer from irreducible zero-point noise (Caves, Phys. Rev. D, 1982).
- \blacksquare Quantum nondemolition measurements possible w/ qubits (Schuster et al., Nature, 2007)

10 GHz band: QND detector with artificial atom based on 3D superconducting qubit

AC, Akash Dixit, D.Schuster (U.Chicago) Waveguide coupler **Qubit sensor Axion cavity** in high B-field $20_µm$ 253 nm 260 nm **Josephson** $25 \, \text{mm}$ Junction

R&D supported by Heising-Simons Foundation. Aaron S. Chou, Fermilab Scientists Retreat

Possible single photon detectors in the 100 GHz band

- Tiny low heat capacitance TES bolometers placed inside \bullet cavities, reducing threshold from 1 eV down to 10⁻³ eV
	- Unlike WIMP detectors, we do not need large volume since we want quantum efficiency to be tiny to maintain high cavity quality factor.
	- Unlike CMB detectors we do not need to sink 10 pW DC power
	- Possible collaboration with Flavio Gatti (Genova) funded by Marie Curie staff exchange grant
- \bullet QND or direct photon absorption using artificial atoms implemented using quantum dots
	- Single photon absorption induces transition between Landau levels
	- Transition frequencies are continuously tunable via external magnetic field
	- Single electron transistors become single photon detectors Aaron S. Chou, Fermilab Scientists Retreat

Komivama, et.al. Nature (2000)

200 MHz $\leq m_a \leq 200$ GHz

Our LDRD supports a mK-class test stand.

- He³-He⁴ dilution refrigerator
- **Integrated** $\mathcal{O}(10)$ **T solenoid**
- Siting is in progress.
- We are currently searching at $\mathcal{O}(1)$ GHz.
- Our QC LDRD effort gives us access to $\mathcal{O}(10)$ GHz band.
- We have the beginnings of a plan to reach 100 GHz.
- **All this work can be accommodated by our test stand.**