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A brief introduction to QCD axions

m Locally coherent oscillation of QCD vacuum angle 8 about the
CP-conserving minimum.

m O(x, t) = Oy’ M) with Gpay ~ 10719

m While WIMPs are point-like and suited to bolometry, sub-eV
axions are field-like and require unique detector strategies.



QCD axions: well-motivated, but the mass is not

well-constrained
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m Current haloscope experiments looking at < 2 GHz and
~ 6 GHz.

m SN1987A give us an upper limit m, ~ 250 GHz. ..



Signal integration is nontrivial.

u Pa’y'y = gaz’y'y%Bg VCnmEQL
m To boost signal power, you can:

m increase Q; (but Qy = 10% ~axion linewidth, and
superconductors are not easy to use in By ~ 10 T)

m increase B2V

m increase form factor C,,¢ via clever cavity design

m Alternative approach: lower noise rates!



Axion Dark Matter eXperiment layout
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m Cavity operates at O(100) K

m Superconducting electronics package (microstrip squid
amplifier) in a field-compensated region

m Warm electronics: heterodyning, etc.

m This approach is ok up to O(10) GHz, beyond which we run
into the single quantum limit.



We need qubits to beat noise-limited linear amplifiers.
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m Linear amplifiers suffer from irreducible zero-point noise
(Caves, Phys. Rev. D, 1982).

m Quantum nondemolition measurements possible w/ qubits
(Schuster et al., Nature, 2007)



10 GHz band: QND detector with artificial

atom based on 3D superconducting qubit
AC, Akash Dixit, D.Schuster (U.Chicago)
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Possible single photon detectors in the 100 GHz band

* Tiny low heat capacitance TES bolometers placed inside
cavities, reducing threshold from 1 eV down to 103 eV
— Unlike WIMP detectors, we do not need large volume
since we want quantum efficiency to be tiny to
maintain high cavity quality factor.
— Unlike CMB detectors we do not need to sink 10 pW
DC power
— Possible collaboration with Flavio Gatti (Genova)
funded by Marie Curie staff exchange grant
* QND ordirect photon absorption using artificial atoms
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Komiyama, et.al, Nature (2000)

external magnetic field

— Single electron transistors become single photon
detectors
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200 MHz < m, < 200 GHz

Our LDRD supports a mK-class test stand.

m He3-He? dilution refrigerator
Integrated O(10) T solenoid

Siting is in progress.

We are currently searching at O(1) GHz.
Our QC LDRD effort gives us access to O(10) GHz band.
We have the beginnings of a plan to reach 100 GHz.

All this work can be accommodated by our test stand.



