Neutrinos Originating from the Fermilab Muon Campus Delivery Ring During the g-2 Experiment

J. Grange, Z. Pavlovic, D. Stratakis, J. Zennamo

Overview

- The Delivery Ring accepts charged pions of a given energy from the old PBar source
- These pions travel around the Delivery Ring and decay into muons before being passed into g-2 storage ring
- We have studied the neutrinos that originate from this process at a variety of locations around the lab

Neutrino Flux

Beam Modeling

- 1e7 positively charged pions enter the Delivery Ring per 1e12 POT beam spill from the Recycler
- We track the pions and muons as they create neutrinos and study the energy, timing, and flavor of these neutrinos
 - Using a fast Monte Carlo based on the Delivery Ring survey data and taking into account the pion momentum spread and the muon polarization we can model the flux

Delivery Ring Neutrinos at SBND

- The SBND sits off-axis (~52 mrad) from the main straight section (Straight 10) which drives the overall flux normalization down and shifts the neutrino energy lower
- The early time flux is dominated by muon neutrinos while the late time flux sees electron neutrinos and muon antineutrinos originating from the muon decays
- Over the course of g-2 we will expect to see roughly 3.5 ν_μ charged current interactions in SBND

Delivery Ring Neutrinos at a Sweet Spot

M3 Line

 We can instead select a location around the ring which maximizes our on-axis neutrino flux

- This gives us a tightly peaked 1.3 GeV
 ν_μ neutrino beam with a sub-percent contamination from other flavors
- This overall flux is limited by the total number of initial pions that enter the ring
 - 14 v_{μ} charged current interactions per ton per 1e20

Beam Path

Long Term Thoughts

- This facility offers us a unique source of muon neutrinos with a very narrow energy range
 - FWHM is around 100 MeV compared to 1 GeV for NUMI off-axis at NOvA
- If we can trigger on the first spill (width 120 ns) we can achieve an excellent duty factor with a new coming spill every 10 ms
- The contemporary utility of this neutrino beam is reduced by the limited number of pions that enter the Delivery Ring per POT
 - A reasonable sized detector (\sim 100 ton) exposed to the full g-2 proton allotment (1e20 POT) would see 1,400 CC v_{μ} interactions
- Increasing the overall pion yield into the Delivery Ring would directly increase the overall neutrino flux

Backup

CC Event Rates, Linear Scale

Short-Baseline Near Detector

Sweet Spot Detector

