

Precision Science Working Group

All-Scientists Retreat

4 May 2017

D. Glenzinski, B. Kiburg, J. Whitmore on behalf of the PSWG

Introduction: Precision Science

- Precision science refers to experiments that attempt to break the established laws of physics by testing predictions to the highest accuracy and searching for phenomena that are either extremely rare or forbidden.
 Deviations from expectations are an indication of new particles and new interactions.
- P5 Science Driver -- Explore the Unknown: new particles, interactions and physical principles

Agenda

Precision Science Working Group met twice April 4th and 20th Agenda: <u>https://indico.fnal.gov/categoryDisplay.py?categId=664</u>

Tuesday, Ap	ril 4, 2017	Thursday, Ap	oril 20, 2017
12:00 - 12:15 12:15 - 12:25	Introduction 15' Speakers: Brendan Kiburg (Fermilab), Dr. Juliana Whitmore (Fermilab) g-2 (mu- run) 10' Speaker: Dr. Chris Polly (Fermilab)	12:30 - 12:40	Evolution of Proton Performance at FNAL 10' Speaker: Stephen Holmes (Fermilab) Material: Slides
12:25 - 12:35	Material: Slides REDTOP 10' Speakers: Dr. Corrado Gatto (INFN), Corrado Gatto (INFN)	12:40 - 12:50	Neutrino Flux Originating from Fermilab Muon Campus 10' Speaker: Dr. Diktys Stratakis (Brookhaven National Laboratory) Material: Slides
12:35 - 12:45	Mu2e-II 10' Speaker: Dr. Douglas Glenzinski (Fermilab)	12:50 - 13:00	Accelerator Based Dark Matter Searches 10' Speakers: Andrew Whitbeck (JHU), Nhan Tran (FNAL), Dr. Gordan Krn Material: Slides
12:45 - 12:55	Proton EDM 10' Speaker: Brendan Casey (FNAL) Material: Slides	13:00 - 13:10	Kaons 10' Speaker: Jonathan Lewis (Fermilab) Material: Slides Image: Comparison of the second se
12:55 - 13:05	Transfigured Electron Double Slit Experiment (TEDSE) in IOTA 10' Speakers: Roger Dixon (Fermilab), Dr. Richard Tesarek (Fermilab) Material: Slides	13:10 - 13:20	Precision Science - Theory 10' Speaker: Prof. Richard Hill (University of Chicago) Material: Slides
13:05 - 13:15	A Dark Matter Search using Electron Beams 10' Speakers: Dr. Gordan Krnjaic (Fermilab), Nhan Tran (FNAL), Andrew Whitbeck (JHU) Material: Slides	13:20 - 14:10	Defining Accelerator/Detector R&D/Computing Needs 50' Material: Slides

辈 Fermilab

Our Interpretation

- No attempt at prioritization
 - Multi-parameter optimization requiring input from all stakeholders
 - Laboratory, Agencies, Community
- We defined the charge
 - Relative to what we know now and experiments that are already planned, identify possibilities about efforts that advance searches for the unknown
- Map out what needs to be studied to inform the next stage of the planning process
- Physics \rightarrow Possibilities \rightarrow Needs

🛟 Fermilab

From the Unknown to New Physics

5

4 May 2017

Discovery of New Processes

Discovery of New Particle Properties

p

Near-future detection of a permanent, non-zero EDM indicates a New Physics source of CP violation

Atomic, Molecular EDMs have interpretation complications

Bare particle EDM

Precision Measurements of Particle Properties

Tease out small contributions from new interactions/particles

Maximize physics from this investment

Precision Measurements of Rare Decays

NP contributions to kaon decay

Disallowed Decay Modes

SM rate calcs: ~5% precision CERN NA-62 (K⁺ $\rightarrow \pi^+\nu\nu$) ~100 SM events J-PARC E14 "KOTO" (K⁰ $\rightarrow \pi^0\nu\nu$) ~3 SM events

BSM Physics Program (η and η ' factory) C, T, CP-violation • CP Violation via Dalitz plot mirror asymmetry: $\eta \rightarrow \sigma^{\alpha} \pi^{\alpha} \pi^{\alpha}$ • CP Violation (Type I - P and T odd, C even): $\eta \rightarrow \sigma^{\alpha} \tau^{\alpha}$ and $\eta \rightarrow 3\gamma$ • CP Violation (Type II - C and T odd, P even): $\eta \rightarrow \pi^{\alpha} \tau^{\alpha}$ and $\eta \rightarrow 3\gamma$ • Test of CP invariance via μ longitudinal polarization: $\eta \rightarrow \mu^{\alpha}\mu^{-1}$ • Test of T invariance via μ transverse polarization: $\eta \rightarrow \pi^{\alpha}\pi^{-1}\mu^{\alpha}\mu^{-1}$ • Test of CP invariance via μ replarization studies: $\eta \rightarrow \pi^{\alpha}\pi^{-1}e^{\alpha}e^{-1}$ and $\eta \rightarrow \pi^{\alpha}\pi^{-1}\mu^{\alpha}\mu^{-1}$ • CPT violation: μ polariz. in $\eta \rightarrow \pi^{\alpha}\mu^{\alpha}\nu$ vos $\eta \rightarrow \pi\mu^{\alpha}\nu$ and γ polarization in $\eta \rightarrow \gamma\gamma$

4 May 2017

🚰 Fermilab

Precision Science Working Group

Muon Beam Experiments

Experiment	Accelerator Needs	Detector R&D	Comments
g-2 using µ⁻	Use existing g-2 beamline. Need to switch polarity of several elements	New inflector would increase μ storage efficiency by 50%	CPT test µ+/µ− yield ~ 2.5/1 Program planning.
Mu2e-II (µ−N→ e⁻N)	PIP-II Protons (0.8-3 GeV) ~100kW pulsed	v.Low mass tracker Production Target APD/SiPM for BaF2 calorimeter	x10 improvement Mu2e & COMET: $R_{\mu e} < 7 \times 10^{-17}$ by ~2026 Reuse as much Mu2e as possible
$\mu^+ \rightarrow eee \text{ or } \mu^+ \rightarrow e+\gamma$	Use PIP-II to deliver low momentum μ^+ beam (~20 MeV/c) $10^9-10^{10}\mu/s$ DC beam	v.Low mass tracker with good vertexing	x10-100 improvement MEG: $BF_{e\gamma} < 4x \ 10^{-14}$ by ~2021 Mu3e: $BF_{eee} < 10^{-14}$ by ~2022 Reuse some of Mu2e?

Muon Beam Experiments

Experiment	Accelerator Needs	Detector R&D	Comments
Light DM Exp (LDMX)	~3 GeV Muons Need ~5 x 10 ¹⁴ total DC beam preferred, but pulsed can be used		Especially motivated if g-2 anomaly persists Reuse most of LDMX(e)?
Muon Capture on hydrogen / deuterium	Low energy muon beam, high extinction	Improved TPC reconstruction	Connections to nucleon axial radius → important for DUNE

Other Programs

Experiment	Accelerator Needs	Detector R&D	Comments
REDTOP η Factory at AP50 (in Delivery Ring)	CW Protons: Single 8 GeV proton pulse to DR. Decelerate to 1.8-4.5 GeV. Slow extract over ~40 sec	Optical TPC Multi-readout calorimeter, Active muon polarimeter	Broad program of rare decays, CP, QCD. Connections to proton radius puzzle
Proton EDM	Polarized proton beam. All E Storage Ring.		Phased approach 10 ⁻¹⁹ e-cm in ~5y 10 ⁻²⁹ e-cm in ~10y Leverages g-2 expertise
1000 event level $K^0 \rightarrow \pi^0 \nu \nu$ $K^+ \rightarrow \pi^+ \nu \nu$	High purity beam		KOTO: BF ₀ to 50% by 2020 NA62: BF ₊ to 10% by 2020

Electron Beam Experiments

Experiment	Accelerator Needs	Detector R&D	Comments
Transfigured Electron Double Slit Experiment (TEDSE)	10-50 MeV electrons Utilize IOTA or FAST . Electri/magnetic deflector septa	None	Resolve long standing quantum mechanics puzzles (electron wavefunction)

Further down the road

- Q from Accelerator WG: What R&D should they be working on a decade from now to enable the Next-to-Next-Experiment? Beyond PIP-III
- Muons
 - Very high intensities (high beam powers/target handling)
 - Monoenergetic sources of stopped muons (Muon Cooling)
 - Excellent extinction
 - Pure beam
- Kaons
 - Monoenergetic
 - High Beam Purity (SRF separators)
- Etas / Other Rare Meson Decays
 - High Intensities
- Proton
 - Polarized source

🛠 Fermilab

Summary

- Suite of ideas for the future of Precision Science
 - Natural Extensions
 - New Programs
 - Creative Experiments
- Variety of challenges
 - Accelerator
 - Detector
 - Computing
 - Remaining Nimble and adapting to community developments

• BACKUPS

Upgrade Motivation with Mu2e signal

- A x10 improvement in sensitivity allows measuring R_{µe} to ~10%
 - will probe underlying
 New Physics operators

🛟 Fermilab

CPT analyses enable by running µ-

- Having μ enables 3 types of CPT analyses to be completed
 - $b_{Z}^{\mu} = -(1.0 \pm 1.1) \times 10^{-23} \text{ GeV}$ - Comparison of a_{u-} to a_{u+} *X. Huang thesis
 - In Kostelecky's formalism, constrains b₇ term for muons
 - Would expect this to improve by a factor of 4 compared to BNL (equally matched μ - error)
 - Sidereal analysis
 - Sidereal day 4 minutes shorter

95% CL upper limit $\check{b}_{\perp}^{\mu^{-}} = 2.6 \times 10^{-24} \text{ GeV}.$

- $\check{b}_{1}^{\mu^{+}} = 1.4 \times 10^{-24} \,\text{GeV}.$
- *X. Huang thesis • Will improve by better than sqrt(n) due to running 10 months out of year compared to 3 months at BNL
- Annual variation (TMK never done before due to BNL runs always) being at same time of year)
- Trackers also open door for similar EDM analyses

EDMs

- Interesting because
 - Probe TeV scale operators we don't probe at the LHC, B factories, g-2, or Mu2e
 - Flavor conserving, CP violating
 - Choice
 - 1: give up on naturalness
 - 2: look in places we haven't yet probed sufficiently

Probe strong CPV

- Terms that make eta' mass large exist in QCD lagrangian. These are the same type of terms that lead to strong CPV.
- Choice
 - 1: give up on naturalness
 - 2: find an axion

2/9 B. Casey I proton EDM thoughts

🚰 Fermilab

50 Years of Discover

4/4/17

REDTOP PHYSICS 1/2

🚰 Fermilab

REDTOP PHYSICS 2/2

BSM Physics Program (η and η' factory)

Other Precision Physics measurements

• Proton radius anomaly: $\eta \rightarrow \gamma \mu^+ \mu^- vs \quad \eta \rightarrow \gamma e^+ e^-$

Non- η/η' based BSM Physics

- **Dark** photon and ALP searches in Drell-Yan processes: $qqbar \rightarrow A'/a \rightarrow l^+l^-$
- □ ALPS searches in Primakoff processes: $p Z \rightarrow p Z a \rightarrow l^+l^-$
- Charged pion and kaon decays: $\pi^+ \rightarrow \mu^+ v A' \rightarrow \mu^+ v e^+ e^-$ and $K^+ \rightarrow \mu^+ v A' \rightarrow \mu^+ v e^+ e^-$
- □ Neutral pion decay: $\pi^{0} \rightarrow \gamma A' \rightarrow \gamma e^{+}e^{-}$

Non-BSM Physics Program (η and η' factory) *High precision studies on low energy physics*

D Nuclear models

- Octet-singlet mixing angle
- Chiral perturbation theory
- Non-perturbative QCD
- Isospin breaking due to the u-d quark for g-2) mass difference
 Lots of a
- \Box $\pi\pi$ interactions
- Electromagnetic transition form-factors (important input for g-2)
 - **Lots of other bread&butter physics**

10/28/2016

C. Gatto - INFN & NIU

4

Kaon physics

Other topics

Many other channels to be explored:

- $\begin{array}{l} \mathbf{K}^{+} \rightarrow \pi^{+} + \text{missing energy} \\ \mathbf{K}^{+} \rightarrow \pi^{+} \nu \bar{\nu} (1)^{T,P} \\ \mathbf{K}^{+} \rightarrow \pi^{+} \nu \bar{\nu} (2)^{T,P} \\ \mathbf{K}^{+} \rightarrow \pi^{+} \nu \bar{\nu} \gamma \\ \mathbf{K}^{+} \rightarrow \pi^{+} \nu \bar{\nu} \gamma \\ \mathbf{K}^{+} \rightarrow \pi^{+} \pi^{0} \chi_{0} (\text{FF})^{P} \\ \mathbf{K}^{+} \rightarrow \pi^{+} \pi^{0} + \text{missing energy} \\ \mathbf{K}^{+} \rightarrow \pi^{+} \pi^{0} \nu \bar{\nu}^{T,P} \\ \mathbf{K}^{+} \rightarrow \pi^{+} \pi^{0} X \\ \mathbf{K}^{+} \rightarrow \mu^{+} + \text{missing energy} \\ \mathbf{K}^{+} \rightarrow \mu^{+} \nu \bar{\mu} (\text{heavy neutrino})^{T} \\ \mathbf{K}^{+} \rightarrow \mu^{+} \nu \bar{\nu} (M = \text{majoran}) \\ \mathbf{K}^{+} \rightarrow \mu^{+} \nu \bar{\nu} \nu \nu \end{array}$
- $\blacktriangleright K^+ \rightarrow \pi^+ \gamma^{TP}$
- $\blacktriangleright \ K^+ \to \pi^+ \gamma \gamma \ ^P$

$$\blacktriangleright K^+ \to \pi^+ \gamma \gamma \gamma$$

►
$$K^+ \rightarrow \pi^+ \text{DP}$$
; $\text{DP} \rightarrow e^+ e^-$

► K⁺ lifetime

$$\blacktriangleright \ \mathcal{B}(\mathcal{K}^+ \to \pi^+ \pi^0) / \mathcal{B}(\mathcal{K}^+ \to \mu^+ \nu)$$

$$\blacktriangleright \ K^+ \to \pi^+ \pi^0 e^+ e^-$$

•
$$K^+ \rightarrow \pi^- \mu^+ \mu^+$$
 (LFV)

▶
$$\pi^0 \rightarrow \text{nothing } T, P$$

▶
$$\pi^0 \rightarrow \gamma \text{DP}$$
; $\text{DP} \rightarrow e^+e^-$

$$\blacktriangleright \pi^0 \rightarrow \gamma X$$

^{*T*}E787/E949 Thesis ; ^{*P*}E787/E949 Publication; DP \equiv Dark Photon

Fermilab

