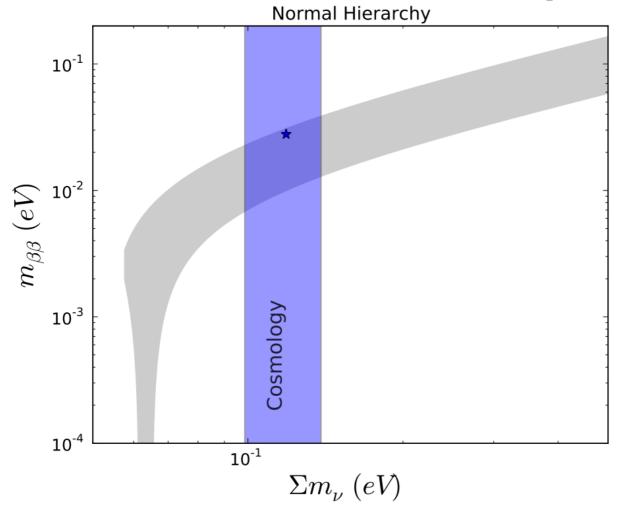

Cosmological Constraints on Neutrinos

Cosmology constrains:


- Sum of the neutrino masses (Σm_{ν}) ; expected to be > 60 meV from oscillation experiments
- Relativistic energy density:
 Typically re-defined as the effective number of relativistic species (*N_{eff}*); expected to be ~3, i.e., the number of neutrino species

Future (~10 years) experiments (CMB-S4, DESI, LSST), expect factor of several improvements in constraints.

Modified from CMB-S4 Science Book (arXiv:1610.02743)

Cosmic Complementarity with HEP Neutrino Experiments

Lower limits for $\beta\beta$ Exp.

Synergy with DUNE

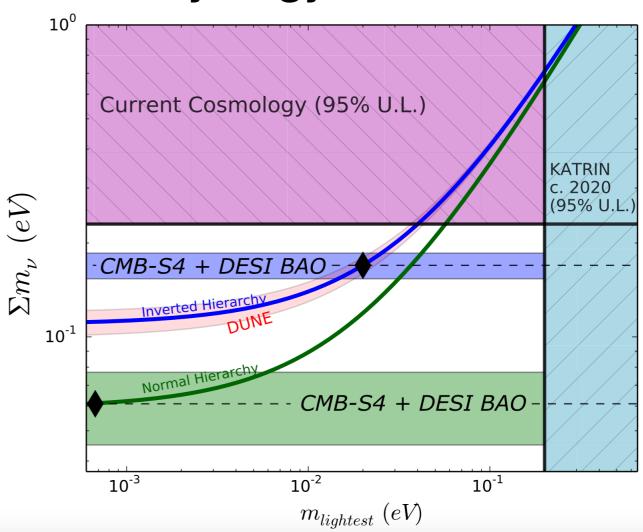


FIG. 3: If the mass hierarchy is normal but the sum of the masses is still relatively large, for example at the value indicated by the star, then there will be a lower limit on $m_{\beta\beta}$, a target for ambitious future double beta decay experiments.

Dodelson & Lykken (arXiv:1403.5173) CMB-S4 Science Book (arXiv:1610.02743) "In the case of a normal neutrino mass ordering with an example case marked as diamond on the lower curve, CMB-S4 would detect the lowest Σm_{ν} at >3 σ . Also shown is the sensitivity from the long baseline neutrino experiment (DUNE) as the pink shaded band, which should be sensitive to the neutrino hierarchy."

Cosmic Complementarity with HEP Neutrino Experiments

ββ β	Cosmo
------	-------

Scenario	m_{etaeta}	m_{eta}	$\sum m_ u$	$\Delta N_{ m eff}$	Conclusion
Normal hierarchy	$< 2\sigma$	$< 2\sigma$	$60\mathrm{meV}$	0	Normal neutrino physics; no evidence for BSM
Dirac Neutrinos	$< 2\sigma$	$< 2\sigma$	$350\mathrm{meV}$	0	Neutrino is a Dirac particle
Sterile Neutrino	$< 2\sigma$	$< 2\sigma$	$350\mathrm{meV}$	> 0	Detection of sterile neutrino consistent with short-baseline
Diluted Neutrinos	$0.25\mathrm{eV}$	$0.25\mathrm{eV}$	$< 150\mathrm{meV}$	< 0	Modified thermal history (e.g. late decay)
Exotic Neutrinos	$0.25\mathrm{eV}$	$0.25\mathrm{eV}$	$< 150\mathrm{meV}$	0	e.g. Modified thermal history; (e.g. neutrino decay to new particle)
Excluded	$0.25\mathrm{eV}$	$0.25\mathrm{eV}$	$500\mathrm{meV}$	0	Already excluded by cosmology
Dark Radiation	$< 2\sigma$	$< 2\sigma$	$60\mathrm{meV}$	> 0	Evidence for new light particles; normal hierarchy for neutrinos
Late Decay	$< 2\sigma$	$< 2\sigma$	$60\mathrm{meV}$	< 0	Energy-injection into photons at temperature $T \lesssim 1 \text{ MeV}$

Table 3-2. Relation between neutrino experiments and cosmology. We include the measurement of the Majorona mass via NLDBD $(m_{\beta\beta})$ or a kinematic endpoint (m_{β}) compared to the cosmological measurement of the sum of the masses $\sum m_{\nu}$ and the CMB measurement of $N_{\rm eff}$. Here $< 2\sigma$ indicates an upper limit from future observations. For Section 3.4, one can use $\sigma(m_{\beta\beta}) \approx 0.075 \, {\rm eV}$ and $\sigma(m_{\beta}) \approx 0.1 \, {\rm eV}$ for observations on the timescale of CMB-Stage IV. For $\Delta N_{\rm eff}$ the use of ≥ 0 indicates a significant deviation from the Standard Model value.

CMB-S4 Science Book (arXiv:1610.02743)

