Fermilab Department of Science

SAC Neutrino Working group summary

Louise Suter, Alex Himmel, Micheal Kirby April 24th 2017

The questions of the current neutrino program

LBL Program:

- The octant is theta_23 maximal if not is it greater or smaller
- IS there CP violation in the neutrino sector, is so what is the phase ?
- Mass hierarchy, is vu_1 or vu_3 the lightest ?
- Testing the 3-neutrino paradigm

Current SBL Program:

- Is there a light sterile neutrino? Measure nu_e appearance and nu_mu disappearance
- What is the nature of the low energy excess seen by MiniBooNE?
- Cross section measurements, specifically LAr
- R+D and measurements needed for for DUNE
- Caveat: What is possible depends on what the true parameters are.

What we could learn from NOvA with current performance

2021: 3σ on the mass hierarchy ~1 year ahead of the competition (ORCA, JUNO). T2K is projecting 2σ on CP violation.

Normal MP

2021: 3σ on the mass hierarchy ~1 year ahead of the competition (ORCA, JUNO). T2K is projecting 2σ on CP violation.

2020: 3σ on the mass hierarchy ~1 year ahead of the competition (ORCA, JUNO). T2K is projecting 2σ on CP violation.

2020: 3σ on the mass hierarchy ~1 year ahead of the competition (ORCA, JUNO). T2K is projecting 2σ on CP violation.

2019: 3σ on the mass hierarchy ~1 year ahead of the competition (ORCA, JUNO). T2K is projecting 2σ on CP violation.

What we will learn from SBN

SBN $v_{\mu} \rightarrow v_{e}$ Oscillation Sensitivity

~2021: 5σ coverage of LSND allowed region

What if SBN sees a signal?

- Keep SBN running to measure nu_s measurements?
- Build new detector in DUNE or Booster neutrinos lines to measure nu_s?
- DUNE sensitivities will be significantly changed if there are additional neutrinos

What we will learn from SBL: Neutrino Cross sections & LAr TPC R&D

Neutrino Flux

0 14

0.12

0.08

0.06

0.04

0.02

Minerva – Physics Goals

Completing last Low-Energy Cross Section Measurements

- Quasi-Elastic studies: double-diff, improved reco
- ratios: Pb/CH, Fe/CH
- Current Medium-Energy Beam 0.00 2 4 6 8 10 12 14 Energy (GeV)
 - Accumulated 3x exposure of LE neutrino mode dataset
 - Expect similar anti-neutrino exposure through FY18
 - Will be able to probe nuclear effect for several channels - Deep Inelastic Scattering

LArIAT - "the little cryostat that could"

- Run III has begun
 - Successful utilization of FTBF
 - R&D on detector parameters
 - TPC wire spacing
 - Light collection devices
 - Mesh cathode

- Particle identification efficiency and separation
- Determine reconstruction eff and calorimetric resolution
- publications are on the way

What we will learn from DUNE: Octant Determination

Octant Sensitivity

- For $\sin^2\theta_{23} < 0.43$ or $\sin^2\theta_{23}$ > 0.59, can determine the octant to 5σ within 7 years.
- As approach sin²θ₂₃ = 0.5 value becomes harder to measure

What we will learn from DUNE: Mass Hierarchy

- 5σ results as soon as 1 year if parameters are favorable.
- Complete coverage by year 6 independent of δ .

What we will learn from DUNE: CP Violation

- 5σ at favorable δ within 7 years.
- 65% coverage at 3σ at that same point.

DUNE: Beyond Measuring Angles

- Beyond just measuring angles, the goal for DUNE is to address the theory of flavor.
- Making sufficiently precise measurements of the angles, octant, hierarchy can provide guidance on the underlying symmetries underneath flavor.
- Measuring the mixing via multiple channels can improve those constraints.
 - Take advantage of long baseline, high energy to look for v_τ appearance, possibly at a different beam tune.

Pascoli and Zhou, JHEP 06, 73 (2016)
Flavor symmetry
$$A_4 \times Z_2 \times Z_4$$
; flavon-induced
connections between flavor mixing and CLFV,
and...
 $\sin \theta_{12} = \frac{1}{\sqrt{3}} (1 - 2|\epsilon_{\varphi}| \cos \theta_{\varphi} + 2\epsilon_{\chi})$
 $\sin \theta_{23} = \frac{1}{\sqrt{2}} (1 + |\epsilon_{\varphi}| \cos \theta_{\varphi})$
 $\sin \theta_{13} = \sqrt{2} |\epsilon_{\varphi} \sin \theta_{\varphi}|$
 $\delta = \begin{cases} 270^\circ - 2|\epsilon_{\varphi}| \sin \theta_{\varphi}, \quad \theta_{\varphi} > 0, \\ 90^\circ - 2|\epsilon_{\varphi}| \sin \theta_{\varphi}, \quad \theta_{\varphi} < 0, \end{cases}$
 $\epsilon_{\varphi} = |\epsilon_{\varphi}| e^{i\theta_{\varphi}}$
 $\delta \approx \begin{cases} 270^\circ - \sqrt{2}\theta_{13}, \quad \theta_{\varphi} > 0, \\ 90^\circ + \sqrt{2}\theta_{13}, \quad \theta_{\varphi} < 0. \end{cases}$

- DUNE will require unprecedented control of systematic uncertainties for a neutrino oscillation experiment.
- One large component: the neutrino flux.
- Spectrometer: measure the actual focused flux to high precision.
- Requires a replica LBNF setup, made up of spare target, horns.
- Could take advantage of an upgraded test beam facility.

Looking forward next the 10 years and beyond

- The lab program for the next 10 years is quite set and DUNE will run for ~10 years
- Not shown, R+D work for DUNE and beam complex improvements, Spectrometer

Looking forward

- Where do we want to go after DUNE?
 - Depends on if questions DUNE set out to answer have been answered,
 - SBN ruling out sterile neutrinos will make it clearer how likely that will be
- What will be the unanswered questions at the end of DUNE?
 - Assuming no sterile neutrinos or other non-standard interactions we will know the Mass Hierarchy, likely know the CP phase, and sin²θ₂₃ if far enough away from maximal
 - We will still not know if neutrino are Majorana or Dirac
 - We will not know masses of the three neutrino states
- What do we want to do with Booster neutrino beam and detectors and after SBN?
 - Nothing
 - Precision nu_s measurements
 - Precision cross section measurements
 - Look for dark matter with beam dump, eta
 - other??

Working with others: Cosmic Frontier

Place holder

Working with others: Theory

What are the most important questions to our theory colleagues?

- Determining the octant is important for model building. Is there a symmetry there or not?
- For values of theta_23 close to maximal this might not happen at DUNE
- Important to test the three flavor paradigm, taus are problematic even at DUNE

- DUNE will require unprecedented control of systematic uncertainties for a neutrino oscillation experiment.
- Important to work with Nuclear/interaction theorists to produce best simulation of neutrino interactions and to understand fully the uncertainties arriving from this

Backup

NOvA reach dependence on oscillation parameters

3 sigma on hierarchy change from 2019 to 2022

DUNE: Neutrinos and more

- Supernova neutrinos
 - DUNE at 10 kpc: ~3000 ve events over 10 seconds
 - Potential for diffuse supernova discovery and ~20% rate measurement
- Nucleon decay
 - A general prediction of grand unified theories.
 - LArTPC technology particularly shines for complex p decay modes with final state kaons, a favored by SUSY GUTs.
 - DUNE is expected to improve existing limits by one order of magnitude with 40 kton detector after 20 years.
- Light sterile neutrinos
- Non-standard interactions
- Dark matter and more...
- Plus millions of interactions in the Near Detector for exploring v-nucleus scattering: final state interactions, nuclear structure, MEC/2p2h channels, ...

- NOvA can remain competitive with T2K and beat ORCA/JUNO to the mass hierarchy, but upgrades are required.
 - PIP1+, upgrade NuMI to from 700kW to 1 MW
 - New target design which extends into horn 1.
- Caveat: What is possible depends on what the true parameters are.

