

Temperature dependence of the drift velocity

V. Galymov SB Meeting

Intro

- In the simulation we assume a constant temperature throughout the TPC volume
- Electron drift velocity is temperature dependent
- The dependence is not completely negligible $\Delta v_{\rm d}/v_{d}\Delta T \sim 2\%/{\rm K}$
- Would be particularly import for for long drifts if persistent gradient O(K) exists throughout the active volume
 - Could impact the studies of the space-charge effect

W. Walkowiak, NIM A 449 (2000) 288

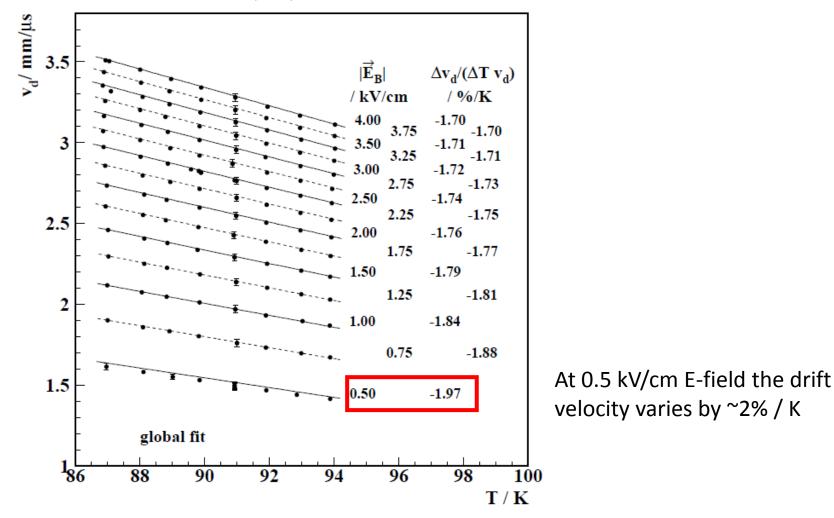
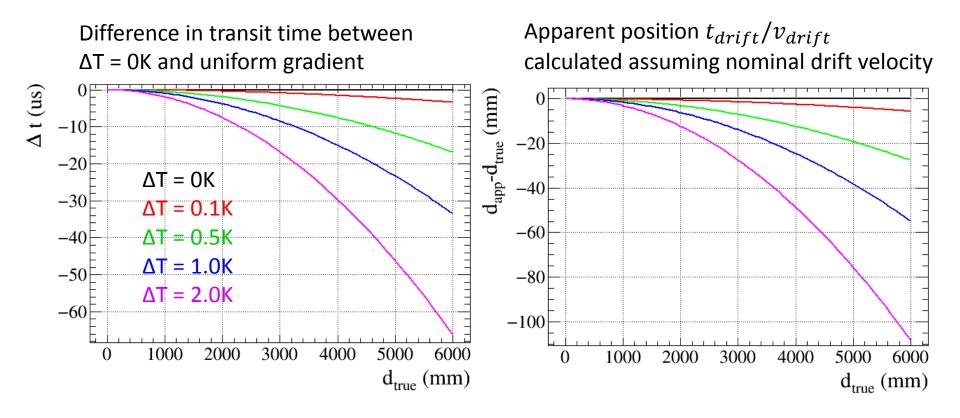


Fig. 5. The electron drift velocity v_d (in the second drift section) as a function of the temperature T for different values of the electric field strength $|\vec{E}_B|$. The result of the global fit of (1) to the data points is superimposed. Except for the data points at T = 91 K, where the total error on the individual v_d value is shown, only statistical error bars are included.

Effect on electron arrival time

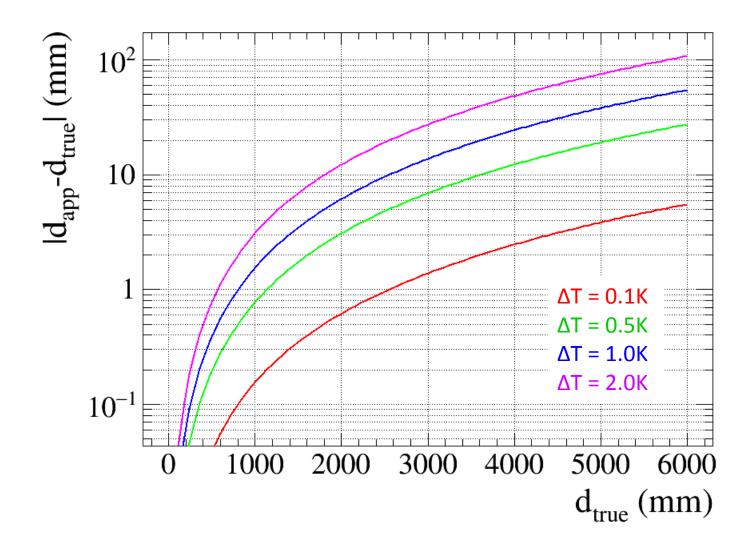
- Assume some constant temperature gradient in LAr over the entire 6m drift
- Take:
 - T at CRP = 87 K
 - T at cathode = $87 \Delta T$ (colder == denser LAr at the bottom)
 - Gives linear temperature profile:

 $T = 87 - \Delta T \times d [cm] / 600.0 [cm]$


• Use the "Walkowiak" parametrization for drift velocity to look at temperature dependence (basically linear in T)

$$v_d(T, |\vec{E}|) = (P_1 (T - T_0) + 1) \left(P_3 |\vec{E}| \ln \left(1 + \frac{P_4}{|\vec{E}|} \right) + P_5 |\vec{E}|^{P_6} \right) + P_2 (T - T_0) .$$

W. Walkowiak, NIM A 449 (2000) 288


parameter	value		
P_1	$-0.01481~\pm$	0.00095	K^{-1}
P_2	-0.0075 \pm	0.0028	K^{-1}
P_3	$0.141 \pm$	0.023	$\left(\frac{kV}{cm}\right)^{-1}$
P_4	$12.4 \pm$	2.7	$\left(\frac{kV}{cm}\right)$
P_5	1.627 \pm	0.078	$\left(\frac{\mathrm{kV}}{\mathrm{cm}}\right)^{-P_6}$
P_6	0.317 \pm	0.021	
T_0	90.371	(fixed)	Κ

Effect on electron arrival time

E.g., the requirement for MicroBooNE was <0.1 K temperature gradient throughout the volume for drift velocity uniformity [MicroBooNE TDR (2/3/2012-DocDB 1821-v12): Cryostat (WBS 1.3)]

Effect on electron arrival time

Conclusions

- The dependence of the drift velocity on temperature is not negligible in particular in the case of long drifts
- Need to minimize formation of a temperature gradient inside the active volume of the TPC
 - Re-inject warmer liquid at the bottom after recirculation loop to generate convective flows inside the cryostat
 - Could help with space-charge as well if the liquid movement is such that the ion density is dispersed towards the field cage
- Would be nice to revisit thermodynamic simulation of the liquid movement inside the cryostat