ADC simulation tools

ProtoDUNE Simulation and Reconstruction

David Adams BNL May 5, 2017

Introduction

I have been looking at ADC test data taken at BNL

- For the P1 ADC version we will use in protoDUNE
- Performance is far from ideal but much better than 35t
- See following slides and talks at DUNE cold electronics and others

Like to include realistic ADC in DUNE simulation

- I am working on tool to provide this
 - Input: input voltage, channel #, time/event
 - Output: ADC count/bin (i.e. in range 0 4095)
- Main subject of this talk
- I would like this tool to usable in other contexts
 - Other experiments: SBND, ...
 - Outside art framework: Root macros, standalone quick simulations
- Details follow

D. Adams, BNL protoDUNE sim/reco ADC simulation tools May 3, 2017

2

Example P1 inverse response

201703a_D04 channel 7

Example P1 linear fit residual

201703a_D04 channel 7

Example P1 linear fit residual zoomed

201703a_D04 channel 7

Example P1 performance summary plot

201703a_D20 channel 10 actual performance for RMS < 1 mV

Software structure 1

Requirements

- Support multiple simulation strategies
 - o Ideal ADC
 - Any one of the tested ADC chips
 - Detector mapping to many ADC chips
 - And more (e.g. dual ADC ideas)
- ADC simulators should be easily usable by all interested parties
 - Both inside and outside art event-processing framework
- Easily-shared, named configurations
 - E.g. "adcsim_mar2015_D05" run in two places will give the same results
- Minimal compile and linker dependencies
 - Should be easy to plug in a different ADC simulations

Software structure 2

Adopted solution

- ADC simulators are constructed as art class tools
 - See https://cdcvs.fnal.gov/redmine/projects/art/wiki/Guide_to_writing_and_using_tools
- ADC simulator has a base interface AdcSimulator
 - Clients access simulators via this interface
 - See dunetpc/dune/DuneInterface/AdcSimulator.h
 - Hope to move this into larsoft soon
 - In dedicated package so clients need not depend on any of rest of larsoft
- Concrete simulators inherit from this base
 - Include art CPP macro to register tool
 - Provide ctor from FCL for configuration
- Tool manager allows clients to access tool configurations
 - By interface type (e.g. AdcSimulator) and name (e.g. adcsim_ideal)
 - FCL configuration file maps names to configuration
 - Configuration includes the name of concrete type and all parameters required by the ctor for that type
 - See dunetpc/ArtSupport/DuneToolManager.h
 - Hope to replace/supplement this with art or larsoft tool manager

ADC simulation tools

Plan the following concrete ADC simulators

- Ideal ADC simulation
 - Already implemented—see following slides
 - See IdealAdcSimulator in dunetpc/dune/DetSim/Tool
 - Expect to move this to dedicated larsoft package
- Simulation based on results from test stand measurements
 - For any one ADC chip measurements
 - Data provide an ADC count pdf for any input voltage
 - Simulator would randomly select from the pdf
 - Begin without time correlations
- Many-chip simulator
 - Passes call to single-chip simulator based on channel map
- Easy for others to provide additional implementations

DUNE detector simulation

DUNE DetSim is already modified to use the AdcSimulator

- Tool is accessed in the SimWireDUNE module
 - Used for DUNE 35t, protoDUNE, FD, ...
 - Probably could/should be renamed and moved to larsoft for use by other experiments
- Previously ideal ADC simulation was embedded in the module
- Now module looks for and uses an AdcSimulator
 - Tool name is a FCL parameter for the module
 - If blank, old simulation is used with (lots of) warning messages

ADC gain

- At present, the signal-shaping service (SSS) converts collected charge to floating ADC counts
 - So ADC simulator must have a gain of one
- I would prefer to have SSS convert charge to ADC input voltage
 - And let ADC simulator convert voltage to ADC count
 - If no objection, I will make this change

Validation

Following slides compare old and new ADC simulation

- Old is the code embedded in SimWireDUNE module
- New is the updated module using IdealAdcSimulator (adcsim_ideal)
- Results show for three planes in one event
- All for the 35t standard simulation of a single muon
- No visible differences

Direct check

- I also compared the old and new values for 10 events in the code and saw no differences
- For both 35t and FD126 geometries

Old simulation: 2z2

Raw signals for apa2z2 event 1

New simulation: 2z2

Raw signals for apa2z2 event 1

Old simulation: 2u

Raw signals for apa2u event 1

New simulation: 2u

Raw signals for apa2u event 1

Old simulation: 2v

Raw signals for apa2v event 1

New simulation: 2v

Raw signals for apa2v event 1

Summary/Conclusions

ADC simulation tools are being developed

- Ideal ADC simulator is available now
- P1 simulator based on test stand measurements coming soon
 - Resolution 4-5X worse than ideal
 - 0.5 mV instead of 0.1 mV
 - Approximately 1% of ADC bins are sticky
 - True input voltage may be far from the calibrated value
 - Far means much more than the nominal resolution
- Plan to add tool that selects between multiple chips

ADC simulator follows new tool pattern

- Define interface for each type of tool
- Provide one or more implementation of the interface as art class tools
- Define named tool configurations in FCL
- Client uses tool manager to find named tool configurations
 - Typically name is a FCL parameter of the tool client