ND design studies/worries

Steve Manly Kam-Biu Luk Mike Kordosky

April 21, 2017

This talk is a simple distillation of an email thread for discussion purposes.

Background

- ND workshop in March kicked off a process to specify a conceptual design of the ND for an end of year CDR
- With information and tools from NDTF, how do we define the needed features of the detector?
- What qualitative and quantitative studies are most important to determine the features?
- How do we do them?

Before going on... an apology

- I was not on LBNE, like half of DUNE.
 - Steve Manly too.
- I do not know everything that was done and not done
- I don't even know everything that is/was done and not done on DUNE
 - <rant> lack of a decent unified document handling system exacerbates all this </rant>
- Please help correct me by citing studies and documents
 - A step beyond "this was studied" please. Pretty please?

"The analysis"

- We need some way of determining the effect of feature X on physics.
 - "physics"=delta-CP? We still agree?
- Concept is to comparing sensitivity with competing features X and X' by changing ND inputs
 - it is easy to let perfect be the enemy of good here, try to concentrate on the leading order effect of X vs X'
- NDTF had a procedure (VALOR fits) for doing "the analysis"
 - Ability to redo quickly in the near future?
 - Other technology? Critical to discuss this.
 - Example studies in this talk meant to drive discussion.
- Possible that the "the analysis" concept isn't right for all X vs X'
 - Clever ideas and shortcuts please?
 - Maybe NDTF outputs can be reinterpreted?

Magnetic field for muons?

- Do we need a B field for muons and if so what kind?
- Compare options, demonstrate physics consequences.
 - Full B field in vertex region as in ref design.
 - Downstream spectrometer, like MINOS ND (25deg angular acceptance for p>1GeV, similar q/p res.)
 - Range stack (no B, no charge ID, p via range for <5 GeV)
- Proposal: have default osc analysis, implement scenarios above, see how sensitivity changes.
 - Discussion of tools & methods here?
- Do FGT and gas TPC fail to work without vertex B?
 - PID and E reconstruction totally broken? Better off with just LAr or scint with HCAL?

We may all have a "gut feeling" here, but it's important to demonstrate the physics consequences since the B-field system could be very expensive and may dominate the design of the ND hall.

Magnetic field for electrons?

- Do we need a B field for electrons?
 - Assume means vertex B.
- Could can we live without charge ID for nue and nuebar?
 - Rerun analysis with unresolved nue+nuebar sample?

Another B field concern?

- Does having a B field with a LAr detector spoil an ND/FD systematics cancellation?
 - Maybe reconstruction efficiency for shorter tracks?
 - Hadronic system measurement?
- Can't we just turn the field off for a while?
- Energy reconstruction will be quite different in any case
 - Tracks & energy exiting the ND will be contained in FD
 - vise versa: FD will have side exiting muons that we probably(?) won't want to toss out.
- I am skeptical we would get obvious direct cancellation (ala MINOS and NOvA).
 - Cross-sections (modulo acceptance differences → want ND to be superset of FD) and "nuclear effects" much more likely.

$v e \rightarrow v e measurement$

- Assuming ideal detector performance and reasonable statistics, what is the effect on physics?
 - Rerun the analysis w/o this information. If it doesn't matter we should not let it drive the requirements.
- Do something totally crude, like a 1 or 2 bin spectrum. Is it a killer?
- What are the detector requirements to get a good flux constraint?
 - E & θ resolution.

See recent work by Chris Marshal in NDWG meetings

- Local beam divergence and uncertainty on simulation of it.
- If we need spectrum information, rerun the analysis with more modest performance.

Missing pT information

- To what extent does this provide CC vs NC discrimination?
 - Preliminary studies (C Marshall) say not much?
 - What can "full kinematic" information (R Petti) do?
- Did the NDTF even use this information?
 - If not, didn't the physics performance look OK? Do we not believe it?
 - Can we define a simplified study which will quantify the impact on physics?
- CC coherent pion scattering kinematics can resolve local beam divergence
 - If $v \in v$ e spectral info is needed and limited by divergence, then this would be worth a study.
 - Maybe a study with perfect reconstruction could demonstrate needed statistics?

FD vs FD analysis

- Question: To what extent do the highly correlated ND numu and nue samples reduce systematics due to
 - cross-sections / nuclear effects
 - energy resolutions
 - reconstruction efficiencies
- To what extent can the FD go it alone?
 - Imminent excommunication?
 - If the nuclear effects/cross-sections have a high degree of cancellation it could influence the need for Ar in an ND.
 - I am skeptical. but perhaps we can cheaply address this.
 Maybe the answer is already known.

Pileup

- General feeling that ND must have a fast tracking option? (FGT, scintillator)
 - Need studies to make this definitive
- How to deal with it in LAr/GAr tpc?
 - Can we run TPC at nominal intensity? If not, can we turn down the intensity by ~x10? How much exposure does this sacrifice?
- Effect of pileup on calorimetry? Especially γ .
 - I believe this will need to be looked at as we get more specific about a design since it depends critically on the size of the tracking volume, it's speed, what it's made of, and the material around the volume.

Closing thoughts and worries

- This talk wasn't comprehensive.
- There is a lot of NDTF work that I/we still need to digest.
- What is the short-term availability of VALOR? What replaces it, if anything?
- Questions of "framework". Do we need to ensure there is one now?

People.

- We have a mix of relatively specific and not-so-specific studies that can be matched to groups with different capabilities.
- Now is a good time to get involved.