

LBL/ND Software

DUNE-ND-GGD & EDEP-SIM

Clark McGrew Chang Kee Jung, Jose Palomino, Brett Viren, Guang Yang Stony Brook Univ. & BNL

- What these tools are for
- Simulation of Detector Geometry and Energy Deposition
 - DUNE-ND-GGD (https://github.com/gyang9/dunendggd.git)
 - EDEP-SIM (https://github.com/ClarkMcGrew/edep-sim.git)
- Next steps (design studies we anticipate)

Motivation

- Agreeing on a baseline in the next couple months will require tools to rapidly evaluate proposals
- Some things we are trying to achieve
 - → Ability to try out ideas with little overhead
 - Easy installation/Easy start-up
 - Flexible (easy) geometry definition
 - > Fast simulation that naturally transitions to a full simulation.
 - → Scalable design
 - Start simple, but have all of the machinery needed for a detailed simulation
 - Designed (and "simple") to add a detailed response/electronics simulation
 - Based around the successful detector/response simulation used in T2K
 - > Any "fast-sim" output is upgradeable to a full simulation.
- Our solutions
 - DUNE-ND-GGD: A library of tools to quickly build detector geometries
 - → EDEP-SIM: An experiment independent tool to simulate energy deposition
 - ➤ Not included: A response simulation
 - Already have Scintillator, Gas TPC and LAr TPC (with wires) in hand, but this is more experiment independent.

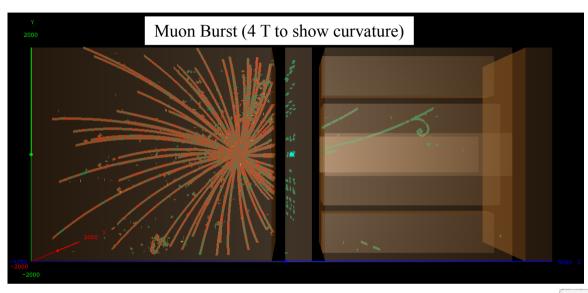
DUNE-ND-GGD

- Python scripts and configuration files to define a detector geometry
 - → This leverages GeGeDe tool produced by Brett Viren (BNL)
 - Pure python so very portable (https://github.com/brettviren/gegede.git)
 - > Output to GDML that's compatible with both GEANT4 and ROOT
- Define geometries to evaluate the feasibilities of a wide range of possible detector configurations
- Flexibly and quickly define geometry configurations
 - Define different Detector configurations
 - Detectors are constructed from predefined Sub-Detectors
 - Sub-Detectors are constructed from a library of predefined Components
- All aspects of a particular detector configuration are controlled INI files provided on command line
 - → Example:

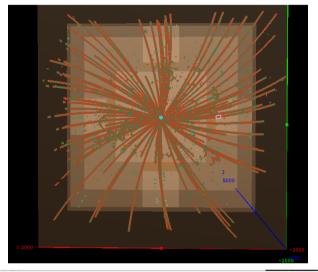
gegede-cli LArTPC.cfg Magnet.cfg Enclosure.cfg World.cfg -w World

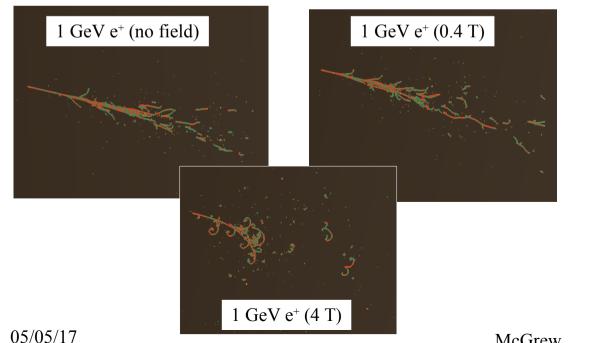
- Rapidly building a library of detector components and sub-detectors
 - → Components: LAr TPC, Straw-Tube Planes, Gas TPC, Scintillator, RPC, &c
 - → Sub-Detectors: LArTPC, Straw-Tube FGT, Oil Based Active Target, &c
 - Plenty of opportunity to define new geometry components

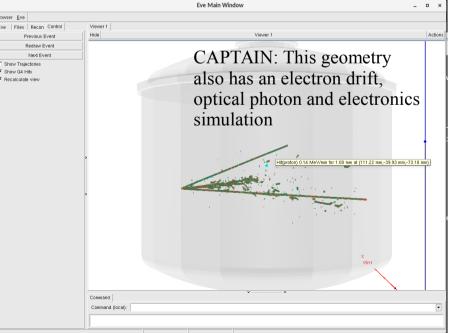
EDEP-SIM


- Experiment independent Energy DEPosition SIMulation
 - → Derived from the T2K near detector simulation
 - Provides the bookkeeping and infrastructure needed to track truth information and energy deposition.
 - > In T2K, the output then drives a response/digitization simulation.
 - Can be called as a library, or to used to directly write a ROOT tree
 - → Being used to simulate/debug the DUNE-ND-GGD geometries
- Detailed simulation
 - → Electric and magnetic fields (from GDML)
 - → Can simulate full beam structure, upstream and magnet interactions.
 - → Detailed model for LAr recombination using NEST[†]
 - Handles both ionization and optical photon production
 - > Validated by CAPTAIN collaboration against published ICARUS ionization measurements
- Major Features
 - Minimal dependencies (only ROOT and GEANT4 via cmake)
 - → ROOT tree format designed to make analysis easy (more in some other meeting).
 - Provides a simple ROOT (Eve) based event display
 - → Fast (can simulate 10's of GeV per second)
 - Reads interactions from GENIE, NEUT, NUANCE (easily expanded)
 - Scalable: Users can start with simple geometry, but edep-sim already handles the complexity needed for a running experiment.
 - Mature code. Except for cosmetic changes, it's been in used for a long time and has been thoroughly exercised.
 - Produces geometry that's ready for GENIE

[†]Enhancement of NEST capabilities for simulating low-energy recoils in liquid xenon, M Szydagis, A Fyhrie, D Thorngren and M Tripathi, Journal of Instrumentation, Volume 8, (2013)


McGrew




A Few Quick Examples

Muon Burst (4 T solenoid to show curvature)

McGrew

Backup Slides

Next Steps

- > We're just starting to apply these tools to design studies.
 - Concentrate on sorting through studies that don't require full reconstruction to help identify weaknesses in design proposals
 - There are more questions than we could possibly address at SBU!
- Acceptance Studies
 - LAr TPC in and out of the magnet \rightarrow acceptance to measure momentum
 - Dead material \rightarrow intrinsic momentum/energy resolution
 - Orientation of the magnetic field
 - Solenoid vs Dipole
- Full spill/cosmic simulation
 - Interaction overlap and occupancy
 - "Magnet" interactions
- Containment
 - ➤ Energy contained within the active region
 - Hadronic/EM/MIP
 - Energy Leakage
 - → Hermeticity
 - Entering backgrounds
 - → Magnetic Field → Electron energy resolution
 - Veto/Timing/Tracking surrounding the LArTPC?
- Secondary interaction physics (e.g. the effect of the hadronic interaction model)