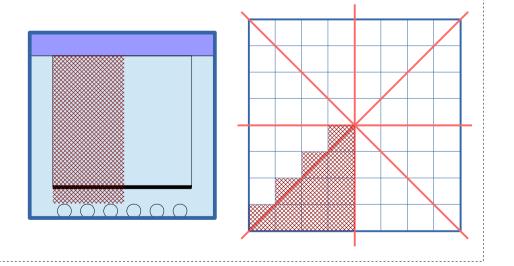
Rayleigh scattering impact on light attenuation due to Cathode and Ground Grid

Anne CHAPPUIS – Isabelle DE BONIS – Dominique DUCHESNEAU – Laura ZAMBELLI

WA105 SB Meeting 10 May 2017

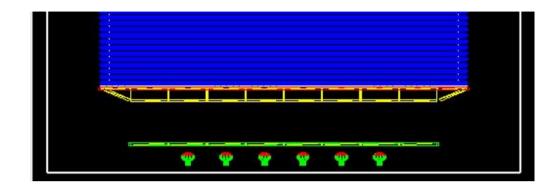
Introduction

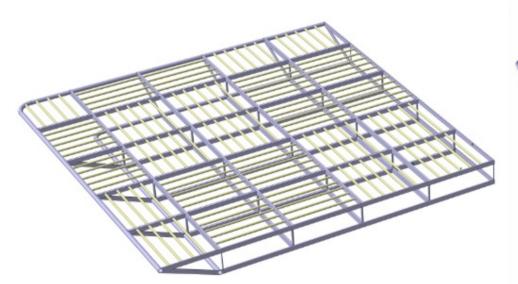
At last SB meeting (3 May 2017):

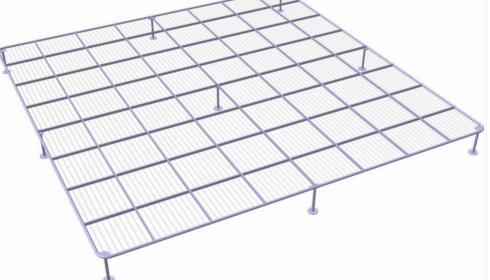

Interrogations about the difference between:

- Light attenuation due to the cathode obtained with LightSim
- Cathode + Structure geometrical coverage

 \rightarrow Is this difference linked to the Rayleigh scattering?


Reminder: Method for the different studies


- Generation of photons at different points of the detector.
- For each production point, computation of the probability to reach the PMT



Cathode pipes, supporting structure, and ground grid

Cathode pipes: 20mm diameter Supporting structure:

- Rectangular Tube: (40x20x2)mm³
- Border tubes: 40mm diameter

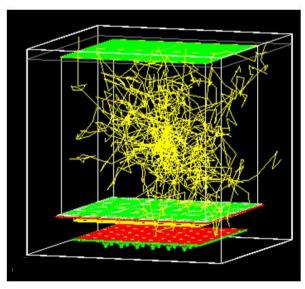
WA105 <~

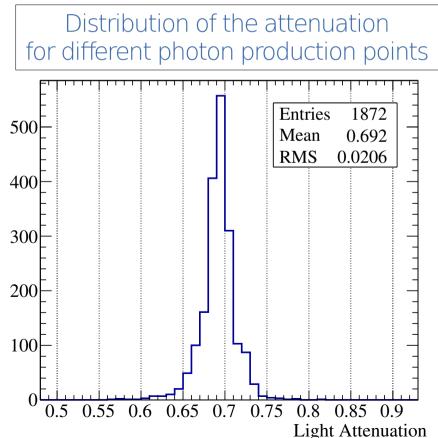
Ground grid:

- Same design as cathode supporting structure
- 2mm-diameter wires

Impact on light collection (with $\lambda_{\text{Rayleigh}} = 55 \text{ cm}$)

Reminder: for scintillation photons, total absorption on stainless-steel.

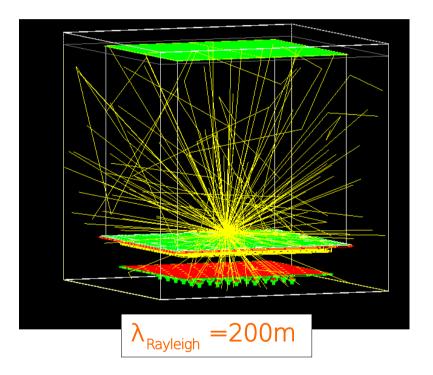

From previous talks (WA105 SB Meeting), loss of:

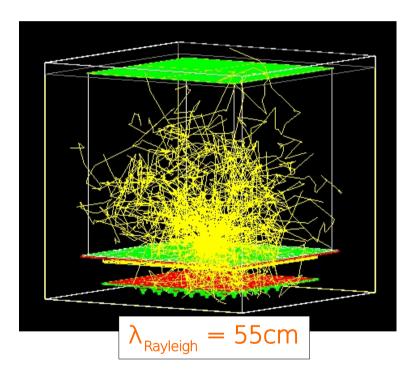

- 60% of collected photons on cathode pipes + supporting structure (7 December 2016)
- 25% of collected photons on ground grid (8 February 2017)

 \rightarrow Attenuation of 70% due to cathode+structure+ground grid

Alessandra's talk (WA105 SB Meeting, 3 May 2017) Geometrical coverage of cathode+structure ~20%

→ Could this difference be explained by the Rayleigh scattering ?





Rayleigh scattering

In LightSim, $\lambda_{Rayleigh} = 55$ cm

 \rightarrow Important impact on the **photon trajectories**

To evaluate this effect on light attenuation:

Same study (comparison after/before cathode+structure+ground grid implementation) in the absence of Rayleigh scattering

6/11

Geometrical coverage (estimation)

• Cathode pipes:

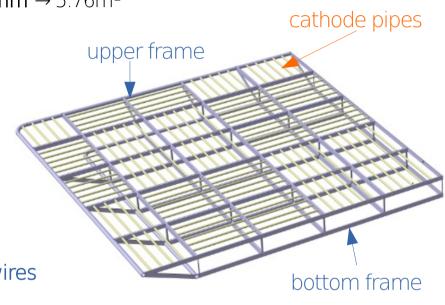
~40 pipes of 20mmx6000mm + 8 pipes of 20mmx6000mm \rightarrow 5.76m²

 \rightarrow Geometrical coverage $\sim 16\%$

- Cathode supporting structure:
 - Upper frame: ~22 tubes of 20mmx6000mm → 2.64m²
 → Geometrical coverage ~7%
 - Bottom frame: 18 tubes of 20mmx5000mm → 1.80m²
 → Geometrical coverage ~5%

• Ground Grid:

Same design as supporting structure + 2mm-diameter wires → Geometrical coverage ~8%

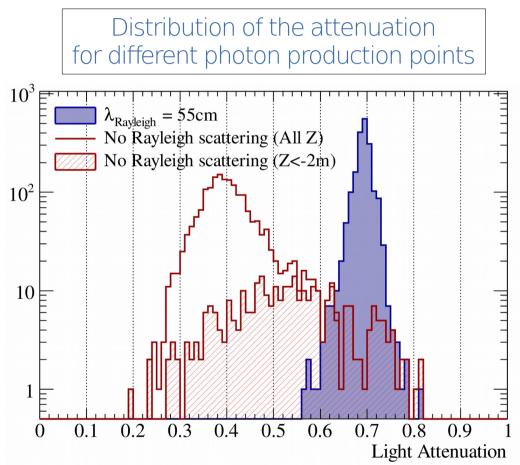

As the frames have the same design, **vertical** photons "see" the cathode **pipes**, the upper **frame** and the ground grid **wires**

 \rightarrow Geometrical coverage $\sim 20\%$

But photons have an isotropic distribution, they will "see" more matter (bottom frame and ground grid support), especially photons produced at low Z

 \rightarrow The coverage can reach \sim 36%

Note: the diagonal and vertical tubes **connecting** the structure frames, the border tubes **diameter** (40mm instead of 20mm) and the **thickness** of the rectangular tubes (40mm) are **not taken into account**



Rayleigh scattering impact on light attenuation

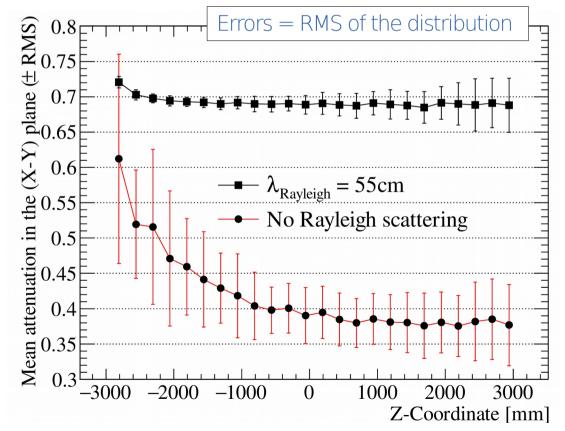
 P_{cGG} = Probability to reach the PMT array after the cathode and ground grid implementation P_0 = Probability to reach the PMT array before the cathode and ground grid implementation

Attenuation =
$$1 - \frac{P_{CGG}}{P_0}$$

- → When there is **no** Rayleigh scattering, **mean attenuation**:
 - Z > -2m: 0.40 ± 0.05
 - Z < -2m (low Z): 0.53 ± 0.12 (Z=0: center of the detector)
- \rightarrow To be compared to 0.36 (geometrical coverage estimation)

Reminder: for the geometrical coverage estimation, we don't take into account:

- Diagonal and vertical tubes connecting the 2 frames of the supporting structure
- Border tubes diameter (40mm instead of 20mm)
- Thickness of the rectangular tubes (40mm)


Z-Dependence of the attenuation

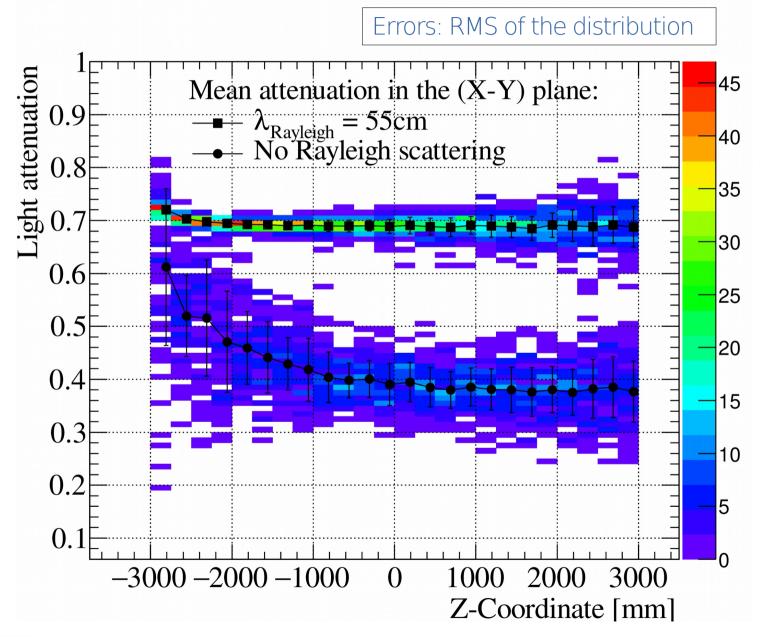
The attenuation depends on the **photons production point**.

To evaluate this effect:

- Computation of the attenuation distribution at different Z-coordinates
- Plot of the mean attenuation in each (X-Y) plane \pm RMS of the distribution

- With $\lambda_{Rayleigh} = 55 cm$:
 - Attenuation ~0.69
- In the absence of Rayleigh scattering:
 - The light attenuation is lower
 - The dependence to X and Y coordinates increases, specially for low Z (the RMS can reach 25%)
 - For high Z, attenuation ~0.38

Conclusion


- In the absence of Rayleigh scattering, the attenuation is consistent with the geometrical coverage estimation.
- In the presence of Rayleigh scattering, the light attenuation due to cathode + supporting structure + ground grid increases from ~40% to ~70%

BACK-UP

Z Dependence of the attenuation

