Status report on cosmic muon event tagging with light signal

Anne CHAPPUIS – Isabelle DE BONIS – Dominique DUCHESNEAU – Laura ZAMBELLI

WA105 SB Meeting 24 May 2017

Introduction

- WA105 SB Meeting, 14 April 2017:
 - ~30% of cosmic muons can't be detected (S1 photons don't reach the PMT array)
 - A peak search algorithm has been developed: tagging of ~65% of detectable muons
- Outline:
 - Undetectable muons characteristics
 - Algorithm efficiency for λ_{Abs} =30m
 - Algorithm **efficiency** for λ_{Abs} =4m
 - Use of the S1 peak exponential shapes to improve the efficiency (very preliminary)

Study done with:

- **PMT quantum efficiency**: 0.20
- Electroluminescence gain G=300
- **PMT** and **electronics response** not taken into account
- Sum of the 36 PMT signals
- 400ns sampling
- PMTs non-uniformly spaced

Fraction of muons depositing photons on PMT array

Detectable muon: muon inducing S1 signal Undetectable muon: muon which doesn't induce a S1 signal

- A lot of photons don't reach the PMT array (mostly due to the absorption in LAr and absorption on stainless-steel components)
- If all the photons produced by a muon are absorbed, this muon can't be detected using the light signal

Undetectable muon trajectories

Anne Chappuis, WA105 SB Meeting, 24 - 05 - 2017

WA105<

Undetectable muon trajectories

WA105

Peak search algorithm

The aim is to tag the S1 peaks

Peak search algorithm efficiency (λ_{Abs} =30m)

Efficiency = #peaks matching a muon / #detectable muons

Fraction of false peaks = # peaks that don't match a muon / #found peaks

Peak search algorithm efficiency (λ_{Abs} =4m)

Efficiency = #peaks matching a muon / #detectable muons

Fraction of false peaks = # peaks that don't match a muon / #found peaks

For Thresholds > 6ph/bins: Very low fraction of false peaks with a maximum efficiency ~78%

Anne Chappuis, WA105 SB Meeting, 24 - 05 - 2017

Peak search algorithm efficiency

Efficiency = #peaks matching a muon / #detectable muons

Fraction of false peaks = #peaks that don't match a muon / #found peaks

 \rightarrow S2 signal is more affected by the LAr absorption: S1 signal is more visible

 \rightarrow The tagging is more efficient for $\lambda_{Abs} = 4m$ (but important reduction of the light signal)

Anne Chappuis, WA105 SB Meeting, 24 - 05 - 2017

WA105

S1 peak exponential shapes

The **exponential shape** is **modified** by the **photon travel** in LAr:

- \rightarrow We **can't** directly use $\Delta t_{Threshold}$ to **reject** false peaks.
- \rightarrow We look at the ratio between the width found by the algorithm and $\Delta t_{Threshold}$

Anne Chappuis, WA105 SB Meeting, 24 - 05 - 2017

peak width

 $\Delta t_{\text{Threshold}}$

S1 peak exponential shapes

→ Can be a good criteria to reject S2 fluctuations tagged as S1 peaks

WA105

S1 peak exponential shapes

Efficiency = #peaks matching a muon / #detectable muons

Fraction of false peaks = #peaks that don't match a muon / #found peaks

Reduction of the fraction of false peaks

 \rightarrow Maximum fraction of false peaks of 18% instead of 80% (for Threshold=50ph/bins)

Maximum efficiency of 68% with ~4% of false peaks
→ Without the cut: for the same efficiency, 12% of the found peaks are false

Anne Chappuis, WA105 SB Meeting, 24 - 05 - 2017

WA 105

Conclusion and next steps

~25% of cosmic muons can't be detected with the light signal

 \rightarrow Muons traveling at the top of the detector and/or with short tracks

- Work on the peak search algorithm:
 - Using 2 parameters: Threshold and N_{bin below}
 - For 400ns sampling, tagging of
 - 68% of detectable muons (λ_{Abs} =30m)
 - 80% of detectable muons (λ_{Abs} =4m)
 - Adding a 3rd parameter based on the peak width estimation: significant reduction of S2 background
 - Example: reduction of a factor 3 for λ_{Abs} =30m
- Next steps:
 - Take into account the PMT and electronics responses
 - Impact of the binning on the algorithm efficiency (400ns and 25ns sampling)
 - Use of the S1 peak shapes to reject false peaks
 - Impact of the LAr absorption length on the algorithm efficiency (λ_{Abs} =30m,4m and λ_{Abs} =89m)

Used in ProtoDUNE-SP simulations