
1

larpandoracontent
v03_07_00

γp

µ

γ

J. Anthony for the Pandora Team

LArSoft Coordination Meeting

June 6, 2017

LArSoft Coordination Meeting

Outline

2

This talk outlines the changes proposed for larpandoracontent v03_07_00:

- Eigen dependency added and dealt with in build tools

- 2D/3D sliding linear fits now use Eigen to determine coordinate system

- Shower direction convention updated so that principal axis points away from the
vertex

- PcaShowerParticleBuilding algorithm moved from larpandora to larpandoracontent

- LArCaloHit object added to hold track, shower, other and Michel classification
probabilities

- Added an algorithm for an SVM-based approach to vertex selection using the SVM
interface added in v03_05_00

- Added an algorithm for SVM-based track/shower ID

- SVM data files located from FW_SEARCH_PATH using cet::search_path functionality

The changes are in feature branches named ‘feature/larpandoracontent_v03_07_00’ in
larpandoracontent, larpandora, uboonecode, uboonedata and dunetpc

LArSoft Coordination Meeting

Eigen dependency and usage I

3

• Eigen is a header-only C++ library for linear algebra, facilitating e.g. PCA

• 2D and 3D sliding linear fit objects in Pandora need to determine a coordinate system
against which to describe the fit

• Extremal points of the Cluster were previously used to determine this axis, which usually
form a good basis

• A bad choice of axis can lead to a poor fit:

‣ The Cluster position could be effectively multivalued on a bad projection

‣ Traversing small distances across the fit can project to large changes along the Cluster,
so accuracy is lost

• To improve quality of the coordinate system, Eigen can be used to determine the principal
axis instead

• An Eigen dependency has been added to larpandoracontent

• Changes to build mechanics are working nicely – fairly minimal since Eigen is header-only

LArSoft Coordination Meeting

Eigen dependancy and usage II

4

• PcaShowerParticleBuilding algorithm already depended on Eigen so had been housed in
larpandora rather than larpandoracontent to avoid this dependency

• The dependency has been adopted and this algorithm has now been moved to
larpandoracontent

• The chosen shower axis direction was following Eigen’s default axis direction convention
(low x to high x if not single-valued in x; else low y to high y etc)

• Analysers didn’t like this convention – so this has been altered such that the direction of
the axis always points away from the shower vertex

• We assume that the reco centroid is farther from the start of the shower than the vertex

LArSoft Coordination Meeting

Hit-based track/shower ID

5

• A new object, lar_content::LArCaloHit, has been added that endows pandora::CaloHit
objects with normalised track-like, shower-like, or none/other probabilities – plus a Michel-
like probability

• The probabilities are set during instantiation of the LArCaloHit object and can then be used
for pattern recognition. By down casting CaloHits to LArCaloHits, we can access these
additional properties

• This change facilitates the ongoing development of Hit-level track/shower/other(/Michel) ID,
in collaboration with Robert and Dorota

LArSoft Coordination Meeting

Pandora SVM framework

6

• SVM framework was added In larpandoracontent v03_05_00 to generalise the treatment of
SVMs in the now-complete SVM vertex selection algorithm

• This comprises two parts:

‣ LArSupportVectorMachine object: provides the fundamental mechanics

‣ LArSvmHelper class: automates some low-level work to facilitate high-level usage

• The framework allows already-trained SVMs to be used inside Pandora to make binary
classification decisions

• Training of the SVMs must be done using an external package – but mechanics for producing
training sets in the right format is provided

• The trained SVMs take the form of an XML document with a set of parameters, such as the
type of kernel to use and the number of features, followed by an arbitrarily long list of
support vectors with the same dimensionality as the feature space

LArSoft Coordination Meeting

LArSupportVectorMachine I

7

• The LArSupportVectorMachine object provides the mechanics for initialising the SVM from
the XML data file, extracting properties of the initialised SVM, asking for/defining the kernel
function and performing classification

• Contents of the data file and the state of the SVM are checked for consistency and an
exception is raised if there is an issue:

‣ Number of features

‣ Size of support vectors

‣ Whether the SVM has been initialised before usage

‣ Sizes of the mu/sigma vectors, used to standardise the data if necessary

• The object is designed with performance in mind, so C++11 move semantics have been taken
advantage of and further analysis of the performance is going to be performed in the near
future

• Common kernels (linear, quadratic, cubic, Gaussian RBF) are provided and can be set via an
enum, or a custom kernel can be defined by passing a function pointer or using a lambda
function

LArSoft Coordination Meeting

LArSupportVectorMachine II

8

• Declared alongside the SVM object is an abstract class template called SVMFeatureTool,
which inherits from AlgorithmTool

• SVMFeatureTool is an AlgorithmTool with a virtual ‘Run’ method:

‣ First argument is a vector of doubles (the vector of features to be appended by the
tool)

‣ Remaining arguments are a variadic list of arguments to be passed to the method,
templated at the class-level

• The idea is that each algorithm has a set of features, calculated by a set of SVMFeatureTools,
all templated on the same input variables – then we can recast the tools and exploit the
polymorphism in useful ways

• SvmFeatureTools can be configured from at the setting file level in the same way as
AlgorithmTools, allowing different features and different numbers of features to be used
without recompilation

• Each feature tool can calculate an arbitrary number of features and append them to the
vector – feature dimensionality checking is then performed by the SVM

LArSoft Coordination Meeting

LArSvmHelper

9

• The LArSvmHelper provides a number of static methods for facilitating the high-level use of
the LArSupportVectorMachine object

• This includes wrapper methods around the classification functionality, allowing variadic lists
of features to be automatically concatenated before being passed to the SVM – this is useful
since some features may be calculated via feature tools, some by feature tools of different
templating, and simpler ones by the algorithm itself

• Functionality is provided for initializing the list of feature tools from the AlgorithmTool
pointers in the algorithms’ ReadSettings methods

• The ProduceTrainingExample method appends lists of features to a designated file in a
standard format for training an SVM

• Finally, there are methods for calculating and returning lists of features, given the vector of
upcast SvmFeatureTools and the input arguments, which are common to the feature tools by
design

• The helper class relies fairly heavily on method templating and implements compile-time
type-checking via static_asserts where possible

LArSoft Coordination Meeting

SVM data files

10

• Each SVM decision made in Pandora requires a data file that parametrises the SVM

• These files are typically ~a few MB in size

‣ e.g. SvmVertexSelection algorithm’s data file is 7.0MB and comprises two SVMs

• The data files are specific not only to the problem but also to the input data, so we require
separate data files for e.g. MCC7/MCC8, as well as different files for MicroBooNE/DUNE

• As per email discussion, the MicroBooNE SVM data files will live in uboonedata product,
(uboonedata/PandoraData) and similarly in dune_pardata for DUNE

• Within the SVM-based algorithms, the data files are then located using the cet::search_path
functionality

LArSoft Coordination Meeting

Vertexing in Pandora

11

• Vertexing in Pandora occurs at the 2D stage of the reconstruction and consists of 2 parts:

‣ Candidate creation: features of the 2D clusters are used to create a large number of
3D candidate vertices

‣ Vertex selection: the vertices are scored, based on a number of variables, and the
highest-scoring one is chosen

• The previously-available vertex selection algorithms were the EnergyKick and HitAngle
algorithms

• To combine multiple scores, e.g. beam deweighting, energy kick and asymmetry in the
EnergyKick algorithm, we create a probability-like quantity for each and take their product to
make a final ‘probability’, with some parameters to be manually tuned

LArSoft Coordination Meeting

SVM-based vertexing motivation I

12

From DocDB 6753-v1

• HA uses the r/phi distribution of the Hits in the vicinity of a candidate to make a score

• EK uses the transverse component of each cluster energy wrt the vertex candidate to work
out the size of the energy ‘kick’ required – plus an asymmetry score to suppress candidates
that split clear tracks

• Both algs use the ‘beam deweighting score’ to favour upstream candidates

LArSoft Coordination Meeting

SVM-based vertexing motivation II

13

From DocDB 6753-v1
(MCCheating = cheated vertex, not just cheated selection > achievable ceiling here)

LArSoft Coordination Meeting

Common pathology

14

U V Wνμ ESCATTER ν+e
EnergyKick alg
E_nu = 1363MeV
Incorrect

True vtx, reco vtx
x xx

LArSoft Coordination Meeting

SVM approach

15

• Meaningfully combining the scores becomes difficult as the score components become more
codependent and when different topologies prefer different tunes

• These score components abstract an apt feature space but turning a position in the feature
space into a scalar score is difficult – ML can help us here

• SVMs are trained binary classifiers (see backup slides for further description)

• To phrase the problem as binary classification, we train the SVM (details later) to decide
which of two vertices is better (using MC information), given a set of features.

• We split the problem into vertex-region-finding and vertex-finding, since the problems are
quite different – yields a performance benefit

LArSoft Coordination Meeting

Feature selection

16

• Features are based on those used for vertex selection in previous algorithms, plus some
event-based features that allow for different topologies to be treated differently

• Simple distance-based shower-like 2D Cluster clustering is used to provide info about
candidates splitting showers

• Region-finding SVM:

‣ Vertex-based features: energy kick, beam deweighting, global asymmetry, local
asymmetry, shower asymmetry

‣ Event-based features: event showeryness (proportion of showery-cluster-associated
Hits), total energy, volume spanned, longitudinality, number of Hits, number of Clusters,
number of vertex candidates

• Vertex-finding SVM:

[same as above plus the vertex-based r/phi feature]

LArSoft Coordination Meeting

Training set production

17

Region SVM

• Use a method similar to the EK alg to score all the vertices

• Run down the list of vertices and pick every vertex that is >10cm separated from
every other chosen vertex, to define disjoint spherical regions of radius 10cm

• Use the MC information to get the best region (and skip this event if the best region
isn’t within 10cm of the true vertex)

• Produce the feature sets for all the regions

• For each incorrect region, add a training example comprising the feature set of the
correct region and the feature set of the incorrect region, with a 50% probability of
each ordering – then class ‘true’ means the better region was in the first position

Vertex SVM

• Same as the above, except now looking at all the vertices in the correct region and
comparing them with the best vertex

We train the SVMs using the sklearn Python package with a Gaussian radial basis function
kernel, then package the support vectors and other parameters as an XML file to be read by
Pandora

LArSoft Coordination Meeting

SVM-based track/shower ID

18

• A new algorithm has been added for performing track/shower ID for use by analyzers

• The algorithm uses the same SVM mechanics to perform binary classification on PFOs, based
on a number of features

• The mechanics of using and manipulating the SVM object, as well as producing training sets,
for this problem is the same as for the vertexing – all abstracted by the SVM object and
associated helper class

• The main difference between these problems is in the judicious choice of features

• Training sets currently produced for MicroBooNE – to be studied for use in DUNE in the
future

LArSoft Coordination Meeting 19

Track/Shower ID features

straight line length
used to normalise

max separation
between fit layers

difference with
straight line
mean and σ of

shower fit width
sum (layer by
layer) difference
between fits to
positive and
negative edges

X
dT =

X
|TP � TN |

N P

True shower hits

RMS of the
sliding linear fit
sum in all layers

distance to
vertex

dT

dL
width

=
dT

dL
max

� dT

dL
min

dTdL width
width of fit dT/dL

short/Large fit window

dT = |Ts � TL|

LArSoft Coordination Meeting

Feature branches

20

• The changes are in feature branches named ‘feature/larpandoracontent_v03_07_00’ in
larpandoracontent, larpandora, uboonecode, uboonedata and dunetpc

• Branches are complete and have been tested

LArSoft Coordination Meeting 21

Backup slides

LArSoft Coordination Meeting

SVM references

22

• Some very detailed notes:

http://cs229.stanford.edu/notes/cs229-notes3.pdf

• Some easier slides:

http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf

• scikit-learn SVM description and examples:

http://scikit-learn.org/stable/modules/svm.html

• scikit-learn SVM documentation:

http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

http://cs229.stanford.edu/notes/cs229-notes3.pdf
http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

LArSoft Coordination Meeting 23

U

V

W

νe CCQE e+p
EnergyKick alg
E_nu = 471MeV
Correct

True vtx, reco vtx 23

LArSoft Coordination Meeting 24

Sliding fits graphically
SlidingLinearFits

Perform a linear fit taking into account the
positions of hits in a (sliding) fit window

axis:
defined by
extremes
of cluster

orthogonal
axis

Z

x

T

L

SlidingShowerFit
Perform two sliding linear fits, on

positive and negative cluster edges

Local coordinates:
L and T

Straight line:
using a large
fit window, i.e.
including all
hits in the fit

Sliding linear
fit with a small

fit window,
following the
shape of the

cluster

Sliding
linear fit for

the negative
edge Sliding

linear fit for
the positive
edge

LArSoft Coordination Meeting

Pandora LAr TPC Reconstruction

25

Framework development

LAr TPC algorithm
development

Performance metrics and
validation

John Marshall (marshall@hep.phy.cam.ac.uk) 
Mark Thomson (thomson@hep.phy.cam.ac.uk)

John Marshall  
Andy Blake (a.blake@lancaster.ac.uk)

John Marshall  
Andy Blake  
Lorena Escudero (escudero@hep.phy.cam.ac.uk) 
Joris Jan de Vries (jjd49@hep.phy.cam.ac.uk) 
Jack Anthony (anthony@hep.phy.cam.ac.uk)

Please visit https://github.com/PandoraPFA

Pandora is an open project and new contributors would be extremely welcome.
We’d love to hear from you and we will always try to answer your questions!

Contact details:

mailto:marshall@hep.phy.cam.ac.uk
mailto:thomson@hep.phy.cam.ac.uk
mailto:a.blake@lancaster.ac.uk
mailto:escudero@hep.phy.cam.ac.uk?subject=
mailto:jjd49@hep.phy.cam.ac.uk
mailto:anthony@hep.phy.cam.ac.uk
https://github.com/PandoraPFA

