DEEP UNDERGROUND NEUTRINO EXPERIMENT

Flux measurement from v-+e

Chris Marshall, LBNL
Callum Wilkinson, Bern
Kevin McFarland, Rochester
Steve Dennis, Liverpool
ND workshop
7 November, 2017

/\
A
(rreeer ﬂ

BERKELEY LAB




Neutrino-electron scattering

e Pure EW process with known cross section:

do(v,e —v,e) G.m,E,|(1
dy 27

2
E—sin2 6, j +sin* HW(I—y)2]

e Signal is single electron, with kinematic constraint
E.02 < 2m, — very forward electron
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Total statistical uncertainty (%)

Flux measurement for DUNE

E . EE — EE
. b E.(1—cos8) E. 02
,DUNE 3-horn optimized ] o Bl = I s
3'55 —E, > 0.0 GeV o DUNE ND WIH gEt Nl%
3k — E, > 0.5 GeV .. ..
| W— e s 10cey statistical precision on
A rate-only measurement
: ~5 yrs LA
156 e e Shape can be measured
3 by using energy and
0.5 .
I angle of outgoing
% 20 20 60 80 100 120 140 160 180 200 electron

Exposure (ton MW yr)

e Sensitive especially to 0,

14 )
3 v+e for DUNE BERKELEY LAB W\ =




Previous work
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* Previously, showed analysis with very simple (flat)
resolution assumptions

o Extracting flux looked promising, even with ~5Smrad angular
resolution (right plot)
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Improved LAr angular resolution
from Geant4 simulation
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» Simulate forward electrons in LAr, with measurement every 3mm

* At each 3mm plane, track position is whichever is closer to 0 of:

e The true electron trajectory

e The charge-weighted centroid of the shower
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Straight-line fit to tracks

—0.8F0x = 1.0mm, 6, = -8.88 mrad
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 Smear the measurement at each 3mm point by a Gaussian with some
oy, shown here 1mm

e Uncertainty at each point is o, + expected multiple scattering, in
quadrature

e Fit each event to a straight line to determine 0,
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Fit resulting AB,_ distributions to
double gaussians

o, = 1.0mm 15.0cm fit o, = 1.0mm 15.0cm fit

E_ =0.5 GeV E, =2 GeV
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e Wide Gaussian takes into account non-Gaussian
multiple scattering tail

« Width of central peaks follow expected 1/E, form
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Fit resulting AB,_ distributions to
double gaussians

Fit distance = 15cm Gy = 1.0mm 15.0cm fit

E, =5 GeV E, =9 GeV
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* Width of multiple scattering decreases as 1/p

 Normalization of Moliere component also falls with
electron energy
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Double gaussian sigmas

15cm fit
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* y axis is fitted o for angle
in X7 plane only, in mrad

* Red line is what is
expected from equation,
assuming same
measurement uncertainty
on every point, and
neglecting tails
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o(9,)

If o, =200pm

9cm fit
”s  If you reduce the
20F oot uncertainty on each track
18: o entral pea .
o A Tai point measurement to
: 200pm

10 * For example, by using
triangular pads with

charge sharing
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Electronenergy Gev)  ® INO Change to multiple
scattering
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Backgrounds

* Two backgrounds are considered, using GENIE
e v, CC scattering
e Photon backgrounds, mostly from NC m°

e ve selection:

e One electron
e Other charged particle kinetic energy < 20 MeV

e No additional m° ory
 Photon selection:

e Second photon energy < 50 MeV
e Suppressed by 0.1 to account for e/y separation from dE/dx
11 v+e for DUNE




Fitting v—e~ data

» Aim: test how well we can constrain the flux normalization and shape
from E.,0. distributions

» Include beam divergence
» Include realistic detector smearing from previous studies
» Include beam related backgrounds v, and ~

» Use 2D template fit, where each E, template is required to have
>500 events (Gaussian)

» Use event rates based on various potential ND designs:

» HPG: 850 events, not used — rate too low for a binned fit

» STT (5 tons, 5 years): 4250 events, 6 E, bins

Nominal [Ar (15 tons, 5 years), 3mm pixels: 12750 events, 16 E, bins
» Enhanced |IAr, bmm triangular pixels, charge sharing: as above
Scintillator (CH): 4250 (rough comparison with STT)
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Example templates (STT)
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» Each E, bin adds an E.,f0. template to the fit
» 1, and v backgrounds also add templates to the fit

» Note that all flavours contribute to each template!
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The fitter

» Minimize the Poisson-Likelihood:

N
=2 (X)—ni+njIn ——— |,
X ; :LLI( ) ! ! ,Lbi(X)

where n; is the number of data events in the ith Eg,0. bin and pu;(X)
is the MC prediction, a function of template normalizations, X.

» Exclude bins below a threshold, E. > 0.5 GeV used here
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Example fit result (nominal IAr)
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» Deliberately fine template binning to reduce bias and maximize power of
constraint

» Very strong bin-to-bin anticorrelations in the output covariance matrix —
that's fine, >500 events/template ensures everything is nice and Gaussian

» Good discrimination between signal and background templates

C. Wilkinson (Bern) v-e~ scattering for a DUNE flux constraint November 7, 2017 4 /15



Flux

constraining power (1)

Difficult to express constraint without reference to some model:

» Different flavours have a different v—e™~ cross section
» Fit output will always correlate bins

Interested in whether we can do better than flux predictions from
beamline simulations with known hadron production uncertainties etc

Consider how well a v—e™ constraint could restrict the flux covariance
matrix from the beam group (latest 3-horn optimized design)
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Flux constraining power (2)

> MINER\LA1 calculate a probability that their v—e™ data N is predicted by
model M for k bins:

L 1 1 1
PINIM) = (2r)</2 [T y|2 P | 2

(N = M)TZH(N — M)

where ¥y is the data covariance, and |X /| is its determinant.

» Use the same approach: N is the postfit E,, template norms.; M is the
model in template binning

> Calculate postfit covariance matrix =;; for k throws of the original flux
matrix:

== Nika [P(Nlm)k (Mic = M;) (M _Wf)}

where the weighted average in the ith bin is M; = 1/N [ZkP(N\M)kM,k}

1J. Park, et al., Phys. Rev. D93, 112007 (2016)
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Flux constraint example: nominal |Ar

Ve

Postfit covariance Prefit covariance Postfit /prefit

» Difficult to interpret covariances, so | will compare the diagonals for
different configurations

» Also interesting to look at shape-only matrices to look at what
improvements you get over a rate-only measurement
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Different ND configurations
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» Significant reduction in diagonals of rate-+shape matrix, less obvious for

shape-only matrix

» Greater stats for the |Ar scenarios give a better shape constraint than
nominal STT. But STT x5 much better

» Appears that most of the power comes from increasing detector mass

C. Wilkinson (Bern)

v-e

scattering for a DUNE flux constraint

November 7, 2017
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Different ND configurations

1.5 1.5
| —-Prefit —STT _ | —-Prefit —STT _
S STT x5 — |Ar - - e STT x5 — |Ar .
=l IAr x2 — Enhanced lAr - e |IAr x2 — Enhanced lAr .

Postfit/prefit

Postfit/prefit (shape-only)

Rate+shape Shape-only

» Significant reduction in diagonals of rate-+shape matrix, less obvious for
shape-only matrix

» Greater stats for the |Ar scenarios give a better shape constraint than
nominal STT. But STT x5 much better

» Appears that most of the power comes from increasing detector mass
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Bias tests

» Want the fit result to be independent of the input flux.

» Test by fitting MC formed from nominal flux prediction to throws of
the flux covariance matrix.

» Expect some bias towards the input flux because:
1. Only fit a single number in each E, bin, integrated over flavours —
implicitly assumes the proportion of flavours from the nominal throw.

2. The flux uncertainties modify the flux on a smaller scale than the fit
can be binned in

Flux throw/nominal
Flux throw/nominal

o
W
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Flux bias tests

g L L R IR
o Detector setup
f‘; —STT
. — lAr
Z — Enhanced IAr
10°F —CH E

» For each flux throw:
» Reweight the fake data according to the new flux
» Do not make a statistical throw
» Fit the templates (built with the nominal flux)
» Calculate the Hessian at the best fit point

» Bias: N

N
2 _ TRUE _ FIT\ pg—1(, TRUE _  FIT
=303 (W =) Mgt (v RE =)
i=0 j=0
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Flux bias test: nominal |Ar

2 L L L R
=

8 Flux bias

5 — 0 mrad.

. — 1 mrad.

Z,

— 2 mrad. -
— 5 mrad. ]

» Interested in what happens if we offset the beam direction, but
assume we don't know about it. Mimics a beam pointing error

» Offset beam by 1, 2, 5 mrad., and fit assuming the nominal is true

» Reasonably large biases (16 bins in x?). But probably tolerable for
biases < 1mrad.
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Flux biases
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» No significant change to the output covariance matrix

» Clear shape dependence to the bias. Not surprising, but effect grows
rapidly with the beam bias.
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Future and to do

» Various bias tests to be done with background model changes

» Look at the effect of mis-modeling the E. resolution. E.g. bias tests
with a low-side tail

» Radiative corrections are missing from the GENIE v—e™ model, find a
way to approximate their effect

» Investigate RHC flux. Potentially will not work due to larger
v-contamination in ¥ beam — larger flux biases

C. Wilkinson (Bern) v-e~ scattering for a DUNE flux constraint November 7, 2017 14 / 15



Conclusions
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» Technique seems robust, v—e™ scattering has potential to constrain
the flux well

» Poor shape constraint for any detector smearing considered here

» Adding mass to ND will increase the power of the v—e™ constraint
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Backup
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Changing minimum events (STT)
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» Require >500 events/template ensures Gaussian statistics, necessary
to parameterize with covariance matrix

» But 500 is a conservative guess, important to check that this choice
does not bias conclusions of study

» Changing the minimum number of events makes a difference at high
energies, but does not qualitatively change the results

C. Wilkinson (Bern) v-e~ scattering for a DUNE flux constraint November 7, 2017 17 / 15



Changing E. threshold (nominal [Ar)
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» None of the detector setups are particularly sensitive to changes in
the E. threshold

» Unsurprising as lowest E,, template always has a range of around
0-1.5 GeV
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Sampling and MS terms

e Sampling: assume same uncertainty on each point o,,
and that successive points are not correlated

B g 12N
Gsamp =\ TN+ 1)L2 N + 2

0.015GeV [ L

OMS = —
p Xo
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Fit distance (cm)

Angular resolutions, in mrad,
from equations, vs. fit distance
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 Sampling (left) is flat vs. energy
e Multiple scattering (right) is 1/p
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Fit distance (cm)

Added In quadrature - total
uncertainty from sampling + MS

1 2 3 4 5 6 7 8 9 10

Electron energy (GeV)

v+e for DUNE

e Optimal fit distance is
around 1 radiation
length

e Measurement term 1s ~3
mrad

e But multiple scattering
with L. = 14cm is large
below a few GeV




Angular resolution (mrad)
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For 14cm fit
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v+e for DUNE

e Still assumes Gaussian

e Assumes 0, =
3mm/sqrt(12)

e And assumes each
sampling point is
uncorrelated with the
others, which is not
really true for pixels
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...BUt we can do better

e Sampling uncertainty equation assumes equal error at
each point, but in reality we have smaller uncertainties
initially (due to multiple scattering)

* And multiple scattering isn't the only effect, there are
also hard brems

» Want to fit for both simultaneously with full geant
simulation of electrons in LAr
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Example events of why it's hard

_ - 5F

5 .E, af 1.8

* % 3E 1.6
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-3F " 0.4
—afF 0.2

s B S s T T
z (cm) z (cm)

* Technique #1: Follow the true electron trajectory
« At each point, smear the transverse position by o,
« Uncertainty is o, plus the average multiple scattering deflection, in quadrature

 Fit to a straight line
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Example events of why it's hard
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e Technique #2: Charge centroid

e In each plane, take the charge-weighted average position of all hits

e Uncertainty is o, plus the average multiple scattering deflection, in
quadrature

 Fit to a straight line
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X (cm)

There Is a tall

e There are events

with very hard
18 gcatters, where the
:j angular

measurement 1s
terrible
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STT resolutions

160

3 GeV

140
120
100

- L1 L1 1 o lsa s sl i ly f L a1 L a1 L a1
% "5 10 5 0 5 10 15 20 % 5 0 5 0 5 10 15 20
A6, at 8 cm A6, at 8 cm

e Scattering from Geant4 simulations in 0.1g/cm? argon gas

* Assume an angle measurement can be made in 8cm, which is
2 STT modules
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Angular resolution vs. energy

* Blue is if you fit the
Gaussian peak only

Angular resolution (mrad)

L F to the distributions
ull o

- on the previous slide
- | Gaussian o . .
- * Red is used in the

analysis — takes into
account the non-
(Gaussian tails

e Double Gaussian

R R e T P e (used for LAr
Electron energy (GeV) ana]ysis) would be
better
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