Electron Radiation Lengths

Edgar Valencia-Rodriguez

November 6, 2017

The Sample Neutrino Electron Elastic Scattering

- Electrons comes from NuEElastic Process, using the Flux for NuMI beamline in the Medium Energy configuration.
- > The signature of Nu+e is a very forward electron.
- Several cuts are been applied to isolate the fully contained electrons in the tracker region:
 - Shower should don't touch the Side Ecal.
 - Shower should start and end in the tracker region

3 strip orientations -60°, 0°, +60°

Reconstructed Electron Energy

Method Cuts Applied

- MINERvA's Tracker Planes made with Scintillator strips at 3 orientation.
- > Taking the energy deposited on each strip and module.
- Adding the energy hits inside the reconstruction cone, until get some ratio between energy from hits and the total reconstructed energy energy.
- Then, look for the latest module/plane, and get the distance from vertex
 - > In modules
 - > In cm

Scintillator Plastic

Shower Depth

Getting the depth for electrons in only in plastic, when the it has 90 of the total energy.

5

50

100

150

200

250

300

Shower Depth (cm)

Number of Radiation Lengths

Scintillator Plastic

- Considering previous studies of the the Minerva Detector
 - > **Density**
 - Composition
 - Radiation length of the components

Radiation length of scintillator: 42.4269
g/cm²

Number of Radiation Lengths

90% of Energy Containment

No of Rad Len for 90% Energy Containment

Backup