Flux Shape Measurement with $\nu\text{-}\mathrm{e}$ Scattering in STT

Hongyue Duyang

November 6, 2017

Introduction

- The goal is to measure the flux shape using ν -e events.
- There could be two methods:
 - Event by event reconstruction: $E_{\nu} = E_e/(1 E_e \theta_e^2/2m)$
 - Statistically constrain the flux shape by fitting (this talk).
- Use (E_e, θ_e) 2D distribution in each E_{ν} bin as templates and fit to data.
 - E_{ν} : true neutrino energy.
 - E_e : reconstructed electron energy.
 - θ_e : reconstructed electron angle with respect to the line from average meson decay point in the decay pipe to the event vertex.

Updates

- Updated statistics using optimized beam design.
- 3 fitting methods:
 - ► Fit with a function of E_ν: better constraint provided we have a good functional form (see my previous talk at ND meetings).
 - Fit E_{ν} bin-by-bin without a function (focus of this talk).
 - Fit with empirical parametrization of hadron production (future plan).
- Systematic study.
 - Backgrounds.
 - Electron selection efficiency.
 - Electron energy and angle measurement.

Statistics and Detector Assumptions

- 3-horn optimized flux at 574 m (1.07 MW, 80 GeV protons, 1.47 POT per year).
- ▶ 4850 ν -e events in STT (5 ton fiducial mass, 5 years running).
- $\sigma(E_e)/E_e = 6\%/\sqrt{E_e}$
- ▶ *E_e* > 0.15 GeV
- $\sigma(\theta_e) = 1$ mrad.

Electron Energy vs Angle: No Smearing, No ν Divergence

With no smearing, events in each neutrino energy bin populate distinctly in the electron energy vs angle 2D space.

Electron Energy vs Angle: With Smearing & ν Divergence

• Detector smearing and beam divergence smears the distribution, but still see the difference between each E_{ν} bin.

Bin-by-Bin E_{ν} Fit

- 4850 mockdata events, re-weighted to make it different from default MC.
- Statistically independent MC sample with 10X statistics.
- Use Minuit to tune the number of events in each MC E_{ν} bin to minimize χ^2 between data and MC in electron energy and angle 2D space.
- A "smoothness" requirement by adding a ² from each bin and average from adjacent bins (improving this).
- The error band is statistical fitting error (returned by Minuit).

Bin-by-Bin E_{ν} Fit

- 4850 mockdata events, re-weighted to make it different from default MC.
- Statistically independent MC sample with 10X statistics.
- Use Minuit to tune the number of events in each MC E_{ν} bin to minimize χ^2 between data and MC in electron energy and angle 2D space.
- A "smoothness" requirement by adding a ² from each bin and average from adjacent bins (improving this).
- The error band is statistical fitting error (returned by Minuit).

Systematic Uncertainty

- An approximate estimation:
- Background ~ 6%
 - ν_e-CC QE(4%): constrained by e[−]p topology. The uncertainty is ~ 2-3%.
 - ▶ NC- π^0 (2%): constrained by e^+ sample, negligible uncertainty.
 - A very small contribution compared to statistical uncertainty.
- Electron selection efficiency (transition radiation): < 0.5%, constrained by γ conversion sample by removing the positron track.
- The fit relies upon the relation between neutrino energy and reconstructed electron energy and angle:
 - ► *E_e* scale: ±0.5%.
 - θ_e : ± 1 mrad.

Electron Energy Uncertainty

• Shift MC electron energy by $\pm 0.5\%$, repeat the fit.

Electron Angle Uncertainty

Shift MC electron angle by ± 1 mrad, repeat the fit.

Electron Energy and Angle Uncertainty

 Effects of electron energy and angle shift are within statistical uncertainty.

Empirical Parametrization of Hadron Production

- The (x_F, p_T) of hadrons can be parametrized and constrained by ND samples:
- An example is a BMPT-type function (used by MINOS low-ν).
- Tune the hadron production parameters, re-weight ν-e events to do the fit.

BMPT-type fuction:

$$\left(E \times \frac{d^3\sigma}{dp^3}\right) = A\left(1 - x_F\right)^{\alpha} (1 + Bx_F) x_F^{-\beta} \times \left((1 + a'(x_F)p_T + b'(x_F)p_T^2\right) e^{-a'(x_F)p_T}$$

where $a'(x_F) = a/x_F^{\gamma}$ and $b'(x_F) = a^2/2x_F^{\delta}$ 14 parameters are used: 7 for π and 7 for K

$$\pi^+/\pi^-$$
 ratio:

$$R\left(\pi^{+}/\pi^{-}
ight)=r_{0}\left(1+x_{F}
ight)^{r_{1}}$$

 K^+/K^- ratio:

$$R\left(K^{+}/K^{-}\right)=r_{2}\left(1-x_{F}\right)^{r_{3}}$$

Summary

- It looks promising to use 2D template fit method to measure $\phi(E_{\nu})$.
- The uncertainty would still be statistics dominant: detector mass is the most important factor.
- It might help to combine LAr and STT events to do the fit:
 - LAr provides lots of statistics.
 - STT reduces systematics.

• A function fit (of E_{ν} or hadron production) can also improve the fit.

Back up slides

Electron Energy vs Angle: Smeared, With ν Divergence

Beam divergence further smears the distribution with previous θ_e definition (to the detector z).

Bin-by-Bin E_{ν} Fit

- 7500 mockdata events, re-weighted to make it different from default MC.
- Statistically independent MC sample with 10X statistics.
- Use Minuit to tune the number of events in each MC E_{ν} bin to minimize χ^2 between data and MC in electron energy and angle 2D space.
- A "smoothness" requirement by adding a ² from each bin and average from adjacent bins (improving this).
- The error band is statistical fitting error (returned by Minuit).

E_{ν} Parametrization

- Flux is a continuous/smooth function of E_{ν} .
- We use a simple fictional form: f(E_ν) = aE^b_ν(c − E_ν)^d where a, b... are free parameters. (slightly different from the one used at collaboration meeting, where c was a constant)
- Not a perfect fit, but a good start point to demonstrate this method.
- Reweight E_{ν} spectrum to the function. (assume the E_{ν} spectrum can be perfectly described by the function.)

E_{ν} Fit With Function

- Assume there is a smooth function that fits the E_ν spectrum perfectly.
- Use: $f(E_{\nu}) = aE_{\nu}^{b}(c E_{\nu})^{d}$ where *a*, *b*... are free parameters.
- Re-weight the MC to the function.
- Create mockdata (7.5k, independent from MC) by slightly change the parameters and reweight event by event.
- A quite good fit: the error is a few percent in the peak region.
- The error band is statistical fitting error (returned by Minuit).

in situ TR Electron Selection Efficiency Constraint

- ▶ Select $\gamma \rightarrow e^+e^-$ conversion
 - Separated from event vertex (> 1cm)
 - Opending angle in X-Z plan < 5mrad.
 - ▶ *M_{ee}* < 30MeV
- $\blacktriangleright~\sim 10^7$ photon conversion with purity >99%
- Check TR and ECAL cuts on the e^+/e^- in data and MC.

in situ Electron Selection Efficiency Constraint (NOMAD)

NOMAD Data/MC difference in efficiency < 1%.</p>