Low-v Flux

Lu Ren University of Pittsburgh Nov. 7th, 2017

Outline

- Reminder of low-v method
- Flux uncertainty
 - Overview
 - Cross section model
 - FSI model
 - Energy scales
- Summary

Sample

- Input flux (same as NDTF dst samples')
- Target: CH2
- Sample sizes: 500,000 charged-current events per sample
- MC model details
 - o GENIE 2.12.6
 - Study uses Nieves model MEC (circa MINERvA 2017)
 - Comparing with MINERvA (GENIE 2.8.4 With RPA, Nieves MEC and CC1pi reweighted)

Reminder of Low-v Method

Relies on the information from hadron energy

$$\circ \quad v = E_{Had} = E_{\nu} - E_{\mu}$$

- $\frac{d\sigma^{\nu,\bar{\nu}}}{d\nu} = A(1 + \frac{B^{\nu,\bar{\nu}}}{A} \frac{\nu}{E} \frac{C^{\nu,\bar{\nu}}}{A} \frac{\nu^2}{2E^2})$
- In the limit $\frac{\nu}{E} \to 0$
 - Cross sections are constants -- independent of neutrino energy
 - **Small** V/E dependent correction

$$S^{\nu(\bar{\nu})}(\nu_0, E) = \frac{\sigma^{\nu(\bar{\nu})}(\nu < \nu_0, E)}{\sigma^{\nu(\bar{\nu})}(\nu < \nu_0, E \to \infty)}$$

- Flux normalized with external world data
 - cross section

Hadronic system

Low-v Flux

- Use truth information to extract low-v flux
 - Inclusive sample $N^{\nu}(E_{\nu})$
 - CC events in neutrino energy range <10 GeV
 - \circ Flux sample $F^{\nu}(E_{\nu})$
 - Inclusive sample with ν <0.1 GeV
 - \circ **Model correction** $S^{\nu,\nu<\nu_0}(E_{\nu})$
 - \circ Normalization H^{ν}
 - At Ev bin 9-10 GeV

$$\sigma^{\nu}(E_{\nu}) = \frac{N^{\nu}(E_{\nu})}{F^{\nu}(E_{\nu})} * \frac{S^{\nu,\nu < \nu_{0}}(E_{\nu})}{H^{\nu}}$$
$$\Phi^{\nu}(E_{\nu}) = \frac{F^{\nu}(E_{\nu}) * H^{\nu}}{S^{\nu,\nu < \nu_{0}}(E_{\nu})}$$

Flux Uncertainty Estimation Method

• Extract low-v flux with single parameter shifted:

$$\Phi(E_{\nu}) = \frac{F(E_{\nu}) * H}{S^{\nu < \nu_0}(E_{\nu})} \longrightarrow \Phi'(E'_{\nu}) = \frac{F'(E'_{\nu}) * H'}{S^{\nu < \nu_0}(E_{\nu})}$$

- Shape uncertainty from
 - Model correction S: when v < 0.1 GeV, QEL and MEC contribute (small, MEC << QEL, ignore this for now)
 - Flux sample F(Ev)
- Level uncertainty mainly from **inclusive sample**
 - Relative normalization (shape) to cross section at 9-10 GeV

$$H = \frac{N(10)}{F(10)} * \frac{S^{\nu < \nu_0}(10)}{\sigma(10)} \longrightarrow H' = \frac{N'(10)}{F'(10)} * \frac{S^{\nu < \nu_0}(10)}{\sigma(10)}$$

• Depend on **N(10)** / **F(10)**

$$\sigma(10) = \frac{N(10)}{F(10)} * \frac{S^{\nu < \nu_0}(10)}{H}$$
$$\sigma(10) = \frac{N'(10)}{F'(10)} * \frac{S^{\nu < \nu_0}(10)}{H'}$$

Flux Uncertainty Estimation Method

- Sources of uncertainty (separately evaluate pieces)
 - Cross section model
 - GENIE(CCQE, RES, DIS)
 - 2p2h
 - RPA
 - GENIE FSI model
 - Energy scales
 - Normalization (not included- shape only)
- Using truth information, does not include
 - Backgrounds
 - Negligible for neutrino, <1% for antineutrino flux in MINERvA
 - Smearing effect
- Comparing with MINERvA
 - \circ MINERvA uses ν cut 0.3-2 GeV, here uses ν cut 0.1 GeV
 - MINERvA normalizes at 12-22 GeV, here normalizes at 9-10 GeV

L. Ren et al., Phys.Rev. D95 (2017) no.7, 072009

Components of Flux Uncertainty

- Cross section model
 - GENIE(CCQE, RES, DIS)
 - o 2p2h
 - o RPA (recap)
- GENIE FSI model
- Energy scales (recap)
- Summary of flux uncertainties

Cross Section Model Uncertainties in GENIE

- Table from MINERvA
- Differences from MINERvA
 - Show MaCCQE uncertainty (+25% / -15%), which is removed by MINERvA
 - rvn1pi : 1 σ is +/-50% (GENIE recommended) instead of 15% in MINERvA
 - VeCFFCCQEshape not included due to technical problem (<0.6% in MINERvA)

GENIE Knob name	Description	1 σ
MaRES	adjust M_A in Rein-Sehgal cross section	±20%
MvRES	adjust M_v in Rein-Sehgal cross section	$\pm 10\%$
Rvp1pi	1 pi production from νp non-resonant interactions	$\pm 50\%$
Rvn1pi	1 pi production from νn non-resonant interactions	$\pm 15\%$
Rvp2pi	2 pi production from νp non-resonant interactions	$\pm 50\%$
Rvn2pi	2 pi production from νn non-resonant interactions	$\pm 50\%$
VeCFFCCQEshape	Changes from BBBA to dipole	on or off
AhtBY	Bodek-Yang parameter A_{HT}	$\pm 25\%$
BhtBY	Bodek-Yang parameter B_{HT}	$\pm 25\%$
CV1uBY	Bodek-Yang parameter C_{V1u}	$\pm 30\%$
CV2uBY	Bodek-Yang parameter C_{V2u}	$\pm 40\%$

Cross Section Model Uncertainties in GENIE

- Dominated by MaRES, MaCCQE
 - MaCCQE not included in summary plots
- Most are level uncertainty propagated from the 9-10 GeV bin of inclusive sample.
- Only MaCCQE affect the shape of flux ($\nu < 0.1 \text{GeV}$)
 - Including smearing effect might introduce shift of shape from other systematics

$$\Phi'(E'_{\nu}) = \frac{F'(E'_{\nu}) * H'}{S^{\nu < \nu_0}(E_{\nu})}$$

$$H' = \frac{N'(10)}{F'(10)} * \frac{S^{\nu < \nu_0}(10)}{\sigma(10)}$$

MINERvA's 2p2h Uncertainty

- MINERvA measured differential cross section at low 3-momentum transfer region for neutrino
- Available energy
 - ~Ehad (visible energy- not including neutron energy)
- Implementing Nieves 2p2h and RPA improves agreement with data
- 2p2h uncertainty
 - Remaining data MC difference

P. A. Rodrigues et al., Phys. Rev. Lett. 116, 071802 (2016)

MINERvA's 2p2h Uncertainty

- MINERvA 2-step fit for low-v flux:
 - o (q3, Eavail) fit to data
 - Nominal vs best fit
 - Initial state reweighting
 - reweight nn/pp/np event to further improve the agreement with data
 - Small effect, not included in this study
- Apply in the region
 - \circ q3 < 0.8 GeV
 - To both neutrino and antineutrino
 - MINERvA is working on antineutrino version

Ref: MINERvA internal document by P. A. Rodrigues

2p2h Model Uncertainty

- MC sample size increased for this study
- <1% effect on flux
- Similar as MINERvA

RPA (recap)

- Shown at collaboration meeting in August https://indico.fnal.gov/event/13293/session/7/contribution/83/material/slides/0.pdf
- MINERvA's prescription
 - Reweight QE events with 2D weight (q0 vs q3): QE RPA / QE no RPA
 - Extract low-v flux with RPA weight, and take half of the change in flux as an uncertainty
 - Uncertainty of < 2.5% for neutrino and antineutrino flux (MINERvA: <1.5%)
 - Large statistical error above 6 GeV

GENIE FSI Model Uncertainty

- MINERVA FSI uncertainties
- Differences from MINERvA
 - Bottom 3 uncertainties and AGKYxF1pi not included due to technical issue (<1% in MINERvA)

GENIE Knob name	Description	1σ
MFP_N	mean free path for nucleons	±20%
FrCex_N	nucleon fates - charge exchange	±50%
FrElas_N	nucleon fates - elastic	$\pm 30\%$
Frinel_N	nucleon fates - inelastic	$\pm 40\%$
$FrAbs_N$	nucleon fates - absorption	$\pm 20\%$
FrPiProd_N	nucleon fates - pion production	$\pm 20\%$
MFP_{-pi}	mean free path for pions	$\pm 20\%$
FrCEx_pi	pion fates - charge exchange	$\pm 50\%$
FrElas_pi	pion fates - elastic	$\pm 10\%$
Frinel_pi	pion fates - inelastic	$\pm 40\%$
$FrAbs_pi$	pion fates - absorption	$\pm 30\%$
FrPiProd_pi	pion fates - pion production	$\pm 20\%$
AGKYxF1pi	AGKY hadronization model x_F	$\pm 20\%$
Theta_Delta2Npi	Δ decay angular distribution	on/off
RDecBR1gamma	Res decay branching ratio to gamma	$\pm 50\%$
EFNUCR Incr	rease/decrease to nuclear size for low energy hadro	ns(±0.6 fr
FZONE	Change formation time by 50%	
Hadronization_Alt1 Cha	nge AGKY model to do a simple phase space deca	v of hadro

GENIE FSI Uncertainty

- Dominated by mean free path for nucleons
- Similar as MINERvA, ~1% larger

Energy scales (recap)

- Shown at collaboration meeting in August https://indico.fnal.gov/event/13293/session/7/contribution/83/material/slides/0.pdf
- Muon energy scale has larger effect than hadron energy scale
- Assume both are 1% in the following slides

Summary of Flux Uncertainty for Neutrino

- Assume both muon and hadron energy scales to be 1%
- Dominated by cross section model
 - GENIE (MaRES etc.) : level uncertainty propagate from inclusive sample (~7%)

Summary of Flux Uncertainty for Antineutrino

- Assume both muon and hadron energy scales to be 1%
- Dominated by cross section model
 - GENIE (MaRES etc.) : level uncertainty propagate from inclusive sample (~7%)

Conclusions

- Estimated low-v flux uncertainty
 - Cross section model (GENIE, 2p2h, RPA)
 - GENIE FSI model
 - Energy scales
- Assume energy scales of 1% for both muon and hadron, we obtain total uncertainty of ~10% which is dominated by GENIE cross section model uncertainty (largest is MaRES)
- To improve
 - Change the way of external normalization to minimize or remove the level uncertainty coming from inclusive sample (GENIE model)
 - Better understanding of MaRES
 - Better understanding of GENIE FSI model

Backup

Remove GENIE Cross Section Model Uncertainty

Side Study: Effect of Neutron / FSI on Flux

- GENIE FSI model affect neutron number, which has large effect on flux shape
- Inclusive and flux samples w/ and /o FSI or Neutron K.E.
- With FSI, neutron makes ~40% flux shape difference (blue)
- Without FSI, much flat flux (green)

