Role of the MPT/FGT in the DUNE ND Complex

S.R. Mishra and R. Petti

University of South Carolina, Columbia SC, USA

3rd DUNE ND Workshop CERN, November 06, 2017 Events of exclusive process X (signal and backgrounds) in both ND ($P_{\rm osc} \sim 1$) and FD:

$$N_{\rm X}(E_{\rm rec}) = \int_{E_{\nu}} dE_{\nu} \ \Phi(E_{\nu}) \ P_{\rm osc}(E_{\nu}) \ \sigma_{\rm X}(E_{\nu}) \ R_{\rm phys}(E_{\rm rec}, E_{\nu}) \ R_{\rm det}(E_{\rm rec}, E_{\nu})$$

 $R_{\rm phys}$ describes the physics smearing (e.g. final state interactions) $R_{\rm det}$ describes the detector smearing (e.g. readout, pile-up)

- ♦ The ND complex must provide in-situ constraints on Φ , σ_X , $R_{\rm phys}$, $R_{\rm det}$, to be extrapolated at the FD location (FD/ND ratio)
 - \Longrightarrow Uncertainties at FD must be < than FD statistics: \sim 1,000 ν_e CC, 10,000 ν_μ CC
- ◆ Optimize LAr and MPT/FGT to constrain different factors above (complementary):
 - Cross-check with multiple measurements from both LAr and MPT/FGT (redundancy);
 - FD predictions from higher resolution MPT/FGT can be validated in-situ with the ND LAr.
- ◆ Different flux spectra (e.g. oscillated spectra, different on-axis and off-axis locations/measurements, different beam focusing options) can further constrain the overall response matrix, as discussed by Xin Quian at last Coll. meeting

Events of exclusive process X (signal and backgrounds) in both ND ($P_{\rm osc} \sim 1$) and FD:

- - Absolute ν_{μ} flux from ν -e elastic scattering and Inverse Muon Decay (IMD);
 - Relative ν_{μ} flux vs. E_{ν} from low- ν and ν -e elastic;
 - $\bar{\nu}_{\mu}/\nu_{\mu}$ vs. E_{ν} from coherent π^{\pm} production;
 - ν_e/ν_μ AND $\bar{\nu}_e/\bar{\nu}_\mu$ vs. E_ν from $\nu_\mu, \bar{\nu}_\mu, \nu_e, \bar{\nu}_e$ CC spectra.
- lacktriangle $R_{
 m phys}(E_{
 m rec},E_{
 u})$ requires suite of multiple nuclear targets in MPT/FGT:
 - Model-independent determination of nuclear effects from free nucleon or electron targets;
 - Modeling constraints by studying a few nuclei different from Ar in addition to LAr.
- In addition, MPT/FGT offers synergy with LAr to measure $\sigma_X(E_{\nu})$ of several exclusive processes, e.g. π^0 and γ in NC and CC events

Events of exclusive process X (signal and backgrounds) in both ND ($P_{\rm osc} \sim 1$) and FD:

$$N_{\rm X}(E_{\rm rec}) = \int_{E_{\nu}} dE_{\nu} \ \Phi(E_{\nu}) \ P_{\rm osc}(E_{\nu}) \ \sigma_{\rm X}(E_{\nu}) \ R_{\rm phys}(E_{\rm rec}, E_{\nu}) \ R_{\rm det}(E_{\rm rec}, E_{\nu})$$

- lacktriangle $\left| R_{
 m det}(E_{
 m rec}, E_{
 u}) \right|$ can only be provided by LAr:
 - Evaluate impact of the differences in the detector response of ND and FD;
 - Additional constraints from test-beam exposure of LAr detectors with similar readout.
- lacktriangle $\sigma_{\rm X}(E_{
 u})$ requires an Ar target and can be constrained by LAr:
 - Need to measure various exclusive processes on Ar target;
 - LAr benefits from precise calibration of backgrounds and event topologies in MPT/FGT.
- ♦ In addition, LAr offers synergy with MPT/FGT to validate the effect of the nuclear smearing in $R_{\rm phys}(E_{\rm rec}, E_{\nu})$ and some of the flux measurements.

- **♦** Excellent angular, momentum & timing resolution:
 - Low density design allows precise tracking of charged particles;
 - $\delta \theta \sim 1$ -2 mrad, $\delta p/p \sim 3.5\%$, momentum scale uncertainty < 0.2%;
 - ullet Time resolution $\sim 1ns$, can resolve beam structure & withstand high rates (max. drift $\sim 125~ns$).
- **♦** Excellent particle ID over the entire tracking volume & energy range:
 - Electron ID with Transition Radiation (TR) and $dE/dx \Longrightarrow \pi$ rejection $\sim 10^{-3}$;
 - $\pi/K/p$ ID with dE/dx and range.
- **♦** Low A target material:
 - Main target polypropylene radiator foils $(C_3H_6)_n$ with high chemical purity;
 - Reduced systematic uncertainties for measurements not requiring Ar target.
- ♦ Modular design (flexible):
 - Allows to vary target mass by removing/adding radiator foils ($\sim 83\%$ of STT mass) with average density ranging from 0.017 g/cm^3 to 0.10 g/cm^3 ;
 - Can accomodate a number of different nuclear targets.
 - ⇒ Find optimal compromise between target mass (statistics) & resolution
 - ⇒ Ideal for quantifying the (anti)neutrino source (fluxes) & for precision measurements including rare processes

STT module with radiators

STT module for nuclear targets

◆ Improved angular and momentum resolution:

- Lower density reduces multiple scattering contribution;
- 3D track reconstruction capability in B field;
- Worse single hit resolution compensated by higher sampling.

♦ Excellent detection of low energy/momentum particles:

- Reconstruct tracks with 1cm < L < 10cm in STT;
- Proton momentum down to ~ 60 MeV;
- Vertex activity visualization.

♦ Disadvantages of HPArTPC:

- Worse timing cannot resolve beam structure and results in higher pile-up;
- No Transition Radiation $\implies e^{\pm}$ ID;
- Not many γ convert in tracking volume $\Longrightarrow \pi^0/\gamma$ ID;
- No suite of nuclear targets & target purity;
- Smaller fiducial mass for same volume ⇒ statistics;
- Needs a pressure vessel.

S. Manly, DUNE collaboration meeting, August 2017

- ♦ NOMAD used a planar design with drift distance d = 3.2 cm \bot to the beam direction \implies Significant variation of space resolution with angle
- ♦ In STT use small cylindrical tubes (d = 0.5 cm) providing a single hit resolution roughly insensitive to track angle
- lacktriangle Sampling in direction $oxed{\perp}$ to beam factor of 2 larger than along beam direction
- ◆ Geometrical effect varying the number of hits vs. the track angle
 - B bending mitigates the effect for soft tracks;
 - Largest effect for low momentum protons (short tracks);
 - Can be estimated with MC by counting hits along track helix
 - ⇒ Try to get rough estimate without full reconstruction

STT OPTIMIZED FOR e^{\pm} AND π^0/γ

- ♦ Continuous TR+dE/dx detection over entire STT volume, NOMAD only limited forward coverage \implies Improved acceptance and e^+/e^- ID
- lacktriangle Need \sim 12 double STT modules (track \sim 1 m) to match the total foils of the NOMAD TRD
- ◆ Performance of TR in STT evaluated with simulation package from ATLAS TRT (P. Nevski)

Most critical measurements in DUNE ND involve e^{\pm} : ν -e, $\nu_e(\bar{\nu}_e)$ CC, π^0/γ , etc.

Fig. 8. Monte Carlo predicted electron efficiency ε_e corresponding to $\varepsilon_n = 10^{-3}$ as a function of the momentum of the particle

- **♦** Clean γ ID in STT:
 - e^{\pm} ID from TR+dE/dx;
 - Kinematic cuts: mass, opening angle.
- $igoplus For \pi^0$ ID require at least one γ converted in STT $(e^+e^-\ pair)$ and another in ECAL
 - $\bullet \sim$ 50% of γ converted in STT;
 - Kinematic selection of π^0 in NC & CC.
- Measure the π^0/γ background for the ν_e appearance analysis vs. E_{ν}, E_{π}, P_T

- ♦ Multiple nuclear targets in FGT: $(C_3H_6)_n$ radiators, C, Ar gas, Ca, Fe, etc. ⇒ Separation from excellent vertex ($\sim 100 \mu m$) and angular (< 2 mrad) resolutions
- ♦ Subtraction of C TARGET from polypropylene $(C_3H_6)_n$ RADIATORS provides neutrino AND anti-neutrino interactions on free proton target \implies Model-independent measurement of nuclear effects and FSI from RATIOS A/H
- ♦ In addition to the LAr TARGET in front of STT, a solid Ca TARGET (compact & effective) inside STT provides a detailed understanding of the FD A=40 target \implies Study of flavor dependence & isospin physics

♦ Number of events/ton for the key processes for ND flux determination expected in ν beam mode with 1.2 MW beam (80 GeV, 1.47 ×10²¹ pot/year):

Process	Evt/ton (3 y)	Evt/ton (5 y)	•
ν-e elastic scattering	582	970	•
Inverse Muon Decay	53	88	
$ar{ u}_e$ CC	5,160	8,600	3 horn optimized
Coherent π^+	43,659	72,765	
Coherent π^-	1,628	2,714	
$ u_{\mu}$ CC $ u < 0.25$ GeV	397,031	661,718	

- ◆ For same tracking volume STT has 6 times the target mass as HPArTPC at 10 atm
- ♦ Minimum transverse dimensions for STT 3.5m \times 3.5m (fiducial 3.0m \times 3.0m) ⇒ Smaller size compromises e^{\pm} ID, π^0/γ ID & large angle p/π
- ♦ Longitudinal size of 5.8m gives fiducial STT target of $\sim 5m$ and $\sim 4.5t$ (0.1 g/cm^3) \Rightarrow Try to keep fiducial mass $\sim 5t$ for $e^{\pm}, \pi^0/\gamma$, statistics

$\underline{\nu(ar{ u})}$ -e ELASTIC SCATTERING

♦ Benefits offered by STT:

- Statistics sufficient to measure BOTH absolute ν_{μ} flux and the corresponding energy spectrum \Longrightarrow Additional constrain on relative ν_{μ} flux and neutrino energy scale;
- Excellent electron ID with TR and angular resolution to reduce backgrounds;
- Clean low background event selection.
- ◆ Combined analysis of LAr+STT to make optimal use of all available statistics to determine the neutrino energy spectrum
 - ⇒ STT provides background measurements to exploit the additional LAr statistics.
- Determination of ν_{μ} energy spectrum (see talk by H. Duyang):
 - Promising results by fitting the 2D distribution (θ_e, E_e) of the measured electron;
 - Need to apply correction for beam divergence from parent meson decays;
 - Beam simulations predict uncertainty on FD/ND extrapolation < 2% \implies This result implies that the uncertainty on beam divergence is under control
 - Investigating possible in-situ constraints on beam divergence.

USC

LOW-ν RELATIVE FLUX

• Relative bin-to-bin ν_{μ} flux from low- ν method:

$$N(E_{\nu},\; E_{\mathrm{Had}} < \nu_0) \propto \Phi(E_{\nu}) f_c(rac{
u_0}{E_{\nu}}) ~~ f_c
ightarrow 1 ~ ext{for} ~
u_0
ightarrow 0$$

- Measurement of the relative bin-to-bin $\nu_{\mu}(\bar{\nu}_{\mu})$ flux vs. energy in ND;
- Extrapolation of flux spectra to FD/ND(E) ratio by extracting parent meson distributions.

♦ Benefits offered by STT:

- Small muon energy scale uncertainty (dominant systematics) < 0.2%;
- Fractional energy carried by neutrons in $(C_3H_6)_n$ radiator target factor 2 smaller than in Ar \Longrightarrow Smaller uncertainty associated to the ν cut & hadronic smearing
- Large statistics allowing same stringent ν cut for all energies.

Possible to constrain in-situ neutron production:

- Use kinematics in transverse plane (p_T) to reduce neutron impact;
- Constrain production of primary neutrons with exclusive resonance production;
- Calibrate neutrons with charge exchange interactions in STT.

H. Duyang

H. Duyang

COHERENT π^{\pm} PRODUCTION

- Coherent π^{\pm} with minimal momentum transfer to nucleus |t| < 0.05 GeV²
 - Small missing p_T and closest approximation to neutrino beam direction;
 - Little nuclear effects compared to other channels.
- ♦ Benefits offered by STT:
 - Light isoscalar target (C) implies same neutrino and anti-neutrino cross-sections \implies Most precise technique to measure the ratio $\bar{\nu}_{\mu}/\nu_{\mu}$ vs. E_{ν}
 - Statistics allowing an accurate measurement of $\bar{\nu}_{\mu}$ (coherent π^{-})
 - Excellent angular & momentum resolution (t resolution) for background rejection.
- Ongoing study to quantify the sensitivity of coherent π^{\pm} production to the neutrino beam parameters (beam monitoring)

B. Guo

u_e/ u_μ & $ar u_e/ar u_\mu$ FLUX RATIOS

- Simultaneous fit to $\nu_{\mu}(\bar{\nu}_{\mu})$ disappearance AND $\nu_{e}(\bar{\nu}_{e})$ appearance samples in FD \Longrightarrow Key quantities to constrain are RATIOS ν_{e}/ν_{μ} & $\bar{\nu}_{e}/\bar{\nu}_{\mu}$
- Nuclear effects cancel out in the ratios ν_e/ν_μ & $\bar{\nu}_e/\bar{\nu}_\mu$, which can be measured with higher accuracy on light target materials.
- ♦ Benefits offered by STT:
 - Excellent e^{\pm} ID with TR for background rejection;
 - Large statistics of reconstructed $\bar{\nu}_e$ CC;
 - Low A target material;
 - Accurate measure of all four CC spectra $\nu_{\mu}, \bar{\nu}_{\mu}, \nu_{e}, \bar{\nu}_{e}$ constraining parent meson distributions.

 $u_e/
u_\mu$ in Ar and CH $_2$ in DUNE

 e^-/μ^- universality in NOMAD

- ♦ Measurement of (anti)neutrino interactions in Ca (A = 40) and in-situ comparison of results with the corresponding measurements in Ar.
- ◆ Direct model-independent measurement of nuclear effects in Ar from the ratios Ar/H and Ca/H with BOTH neutrino and anti-neutrino interactions
 - \implies Validation of FD predictions from STT in LAr ND (+ rec. effects)
- ♦ Dedicated measurements of nuclear effects with the complete suite of nuclear targets (H, C_3H_6, C, Ar, Ca) in STT to refine/validate nuclear modeling of interactions
 - Ratios of cross-sections and structure functions for exclusive and inclusive processes
 - Difference $\Delta E = E_{\rm rec}^{\nu}(2\ trk) E_{\rm rec}^{\rm QE}(1\ trk)$ in Quasi-elastic topologies;
 - Difference between QE cross-sections determined from 1 track and 2 track samples;
 - Differences between the 2 and 3 track samples from Resonance production;
 - Missing trasverse momentum in exclusive topologies;
 - Backward going pions and protons.
 - \implies Systematic uncertainties on response (smearing) function $R_{\rm phys}(E_{\rm rec}, E_{\nu})$

- ♦ A ND complex based upon the combination of a LAr and a low density MPT/FGT can constrain all key factors: flux Φ , cross-section σ_X , and response functions R_{phys} , R_{det}
- ◆ An effective use of MPT/FGT is to measure/constrain all (anti)neutrino fluxes & the nuclear smearing (response function)
- ◆ Synergies between LAr and MPT/FGT allow combined analyses & validations of predictions (redundancy)
- Key measurements in MPT/FGT: ν -e elastic, low- ν , coherent π^{\pm} , ν_e/ν_{μ} , $\bar{\nu}_e/\bar{\nu}_{\mu}$, nuclear effects
 - ⇒ Ongoing work for STT focused on these studies and related detector performance

Backup slides

EXPECTED STT PERFORMANCE

- ♦ Single hit resolution $< 200 \mu m$
- ightharpoonup Time resolution $\simeq 1ns$
- ♦ *CC-Events Vertex:* $\Delta(X, Y, Z) \simeq \mathcal{O}(100 \mu m)$
- lacktriangle Angular resolution: ~ 2 mrad
- ♦ Momentum res. $(\rho=0.1g/cm^3, B=0.4T)$
 - Multiple scattering term $\boxed{\textbf{0.05}}$ for L=1m
 - Measurement error term $\boxed{ 0.006}$ for L=1m and p=1 GeV/c (N=50)
- lacktriangle Downstream-ECAL res. $\simeq 6\%/\sqrt{E}$
- \bullet e^+/e^- down to 80 MeV from curvature
- ◆ Protons down to ~ 200 MeV/c
- \bullet π^0 with at least 1 converted γ ($\sim 50\%$)

Neutrino radiography of one drift chamber

Reconstructed K^0 mass

- igspace NOMAD: charged track momentum scale known to < 0.2%
- ♦ DUNE STT: $\sim 100 \times$ more statistics and $12 \times$ higher segmentation

STT has good dE/dx particle ID: $\pi^{\pm}/K^{\pm}/p$

Relative efficiency of the cut $\nu < \nu_0$ in DUNE ND reconstruction efficiencies not included (typically > 90%)

