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MEASUREMENT STRATEGY FOR LAr+MPT /FGT ND

Events of exclusive process X (signal and backgrounds) in both ND (P,s. ~ 1) and FD:
NX(Erec) — /E dEV (I)(EV) POSC(EI/) O-X(EV) Rphys(Erechv) Rdet(ErecaEl/)

Rynys describes the physics smearing (e.g. final state interactions)
Ryet describes the detector smearing (e.g. readout, pile-up)

4 The ND complex must provide in-situ constraints on ®, ox, Rphys, [ldet, to be
extrapolated at the FD location (FD/ND ratio)

=—> Uncertainties at FD must be < than FD statistics: ~ 1,000 v. CC, 10,000 v, CC

4 Optimize LAr and MPT/FGT to constrain different factors above (complementary):

o Cross-check with multiple measurements from both LAr and MPT/FGT (redundancy);
e FD predictions from higher resolution MPT/FGT can be validated in-situ with the ND LAr.

4 Different flux spectra (e.g. oscillated spectra, different on-axis and off-axis loca-
tions/measurements, different beam focusing options) can further constrain the overall
response matrix, as discussed by Xin Quian at last Coll. meeting
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Events of exclusive process X (signal and backgrounds) in both ND (P,s. ~ 1) and FD:

NX(Erec) :/E dEV (I)(EV) Posc(Ey) O-X(Ey) Rphys(EremEu) Rdet<Ere07Eu)

' '

MPT/FGT MPT/FGT

4 | O(F,) | benefits from high resolution and light A target(s) in MPT/FGT:

Absolute v,, flux from v-e elastic scattering and Inverse Muon Decay (IMD);
Relative v, flux vs. E, from low-v and v-e elastic,

U,/v, vs. E, from coherent m* production;

ve/vy, AND v, /D, vs. E, fromv,,D,,v., V. CC spectra.

4 | Rohys(Frec, B) | requires suite of multiple nuclear targets in MPT/FGT:

e Model-independent determination of nuclear effects from free nucleon or electron targets;
e Modeling constraints by studying a few nuclei different from Ar in addition to LAr.

4 In addition, MPT/FGT offers synergy with LAr to measure ox(E,) of several exclusive
processes, e.g. m° and v in NC and CC events
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Events of exclusive process X (signal and backgrounds) in both ND (P,s. ~ 1) and FD:

NX(EreC) :/E dEV (I)(EV) POSC(EI/) O-X(EV) Rphys(Erechv) Rdet(ErecaEl/)

' Voo '

MPT/FGT LAr  MPT/FGT LAr

4 | Raet(Erec, E) | can only be provided by LAr:

e Evaluate impact of the differences in the detector response of ND and FD;
e Additional constraints from test-beam exposure of LAr detectors with similar readout.

4 |ox(FE,) | requires an Ar target and can be constrained by LAr:

e Need to measure various exclusive processes on Ar target;
o LAr benefits from precise calibration of backgrounds and event topologies in MPT/FGT.

4 In addition, LAr offers synergy with MPT/FGT to validate the effect of the nuclear
smearing in Rynys(Erec, £,) and some of the flux measurements.
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Downstream

Basic Dipole ND Concept and Dimensions muon system
(~1m ttnck Fe)

v

Magnet + muon system (60 cm Fe + coil)

~5.8m
3D Scint
(1m thick)
LAr STT or HPArTPC
=

~0.9m Downstream (20 rad lengths)
~0.3m Sides, Upstream (10 rad lengths)

.

W

C. Marshall 09/13:
2.5m x 2.5m x 3.25m (Muon ID)
40m x 4.0m x 3.25m (no Muon ID)
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STT OFFERS A UNIQUE TRACKER DESIGN 6

4 Excellent angular, momentum & timing resolution:

e Low density design allows precise tracking of charged particles;
o 00 ~ 1-2 mrad, dp/p ~ 3.5%, momentum scale uncertainty < 0.2%;,
e Time resolution ~ 1ns, can resolve beam structure & withstand high rates (max. drift ~ 125 ns).

4 Excellent particle ID over the entire tracking volume & energy range:

o Electron ID with Transition Radiation (TR) and dE/dx = = rejection ~ 1073;
o /K /p ID with dE/dx and range.

4+ Low A target material:

e Main target polypropylene radiator foils (CsHg),, with high chemical purity;
e Reduced systematic uncertainties for measurements not requiring Ar target.

4 Modular design (flexible):

o Allows to vary target mass by removing/adding radiator foils (~ 83% of STT mass)
with average density ranging from 0.017 g/cm? to 0.10 g/cm?;
e Can accomodate a number of different nuclear targets.

—> Find optimal compromise between target mass (statistics) & resolution

= Ideal for quantifying the (anti)neutrino source (fluxes)
& for precision measurements including rare processes
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STT module with radiators

STT double module
XX'YY assembly
with radiator foils

FE electronics

10 boards

Radiator foils
60 x 4 =240

76mm
~1.4x1072X,

Radiator targets
account for 82.6% of STT mass
and can be tuned to achieve
desired statistics
& momentum resolution

[DUNE CDR Volume 4]

STT module for nuclear targets

STT double module
FE electronics XXYY assembly
repeated on 80mm
10 boards pitch leaving room
for thin target(s)

T/’\ 62mm ,
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ADVANTAGES /DISADVANTAGES OF HPArTPC 8

4 Improved angular and momentum resolution:

e Lower density reduces multiple scattering contribution;
e 3D track reconstruction capability in B field;
o Worse single hit resolution compensated by higher sampling.

4 Excellent detection of low energy/momentum particles:

e Reconstruct tracks with lem < L < 10em in STT;
e Proton momentum down to ~ 60 MeV;
e Vertex activity visualization.

4 Disadvantages of HPArTPC:

e Worse timing cannot resolve beam structure and results in higher pile-up;
e No Transition Radiation = e* ID;

e Not many ~ convert in tracking volume = 7°/~ ID;

e No suite of nuclear targets & target purity;

e Smaller fiducial mass for same volume — statistics;

e Needs a pressure vessel.
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ANGULAR DEPENDENCE 10

4 NOMAD used a planar design with drift distance d = 3.2 cm L to the beam direction

= Significant variation of space resolution with angle

4 In STT use small cylindrical tubes (d = 0.5 cm) providing a single hit resolution
roughly insensitive to track angle

4 Sampling in direction | to beam factor of 2 larger than along beam direction

4 Geometrical effect varying the number of hits vs. the track angle

e B bending mitigates the effect for soft tracks;
o Largest effect for low momentum protons (short tracks);
e Can be estimated with MC by counting hits along track helix

—> Try to get rough estimate without full reconstruction
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STT OPTIMIZED FOR e* AND =¥/~

4 Continuous TR+dE/dx detection over entire STT
volume, NOMAD only limited forward coverage
—> Improved acceptance and e* /e~ ID

4 Need ~ 12 double STT modules (track ~ 1 m) to
match the total foils of the NOMAD TRD

4 Performance of TR in STT evaluated with simula-
tion package from ATLAS TRT (P. Nevski)

Most critical measurements
in DUNE ND involve e*:
v-e, v.(v.) CC, 7°/v, etc.
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S

ean~y ID in STT: N

o e ID from TR+dE/dx; D
e Kinematic cuts: mass, opening angle. &
Q

4 For ¥ ID require at least one v converted in STT
(ete™ pair) and another in ECAL

e ~ 50% of v converted in STT;
e Kinematic selection of 7° in NC & CC. 0.2

4 Measure the 7°/~ background for the v, appear-
ance analysis vs. E,,, B, Pr
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NUCLEAR TARGETS IN STT

LAr
target

(CaHe)n

4 Multiple nuclear targets in FGT: (C3Hg),, radiators, C, Ar gas, Ca, Fe, etc.
—> Separation from excellent vertex (~ 100um ) and angular (< 2 mrad) resolutions

4 Subtraction of

C TARGET

from polypropylene

(CsHg), RADIATORS

provides neutrino AND anti-neutrino interactions on free proton target
=—> Model-independent measurement of nuclear effects and FSI from RATIOS A/H

4 In addition to the

LAr TARGET

in front of STT, a solid | Ca TARGET

(compact &

effective) inside STT provides a detailed understanding of the FD A = 40 target
= Study of flavor dependence & isospin physics
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STATISTICS & TRACKER DIMENSIONS

4 Number of events/ton for the key processes for ND flux determination expected in v
beam mode with 1.2 MW beam (80 GeV, 1.47 x10*' pot/year):

Process

Evt/ton (3 y)

Evt/ton (5 y)

v-e elastic scattering
Inverse Muon Decay
v, CC

Coherent w
Coherent m~

v, CCr <0.25 GeV

582

53
5,160
43,659
1,628
397,031

970

88
8,600
72,765
2,714
661,718

3 horn optimized

4 For same tracking volume STT has 6 times the target mass as HPArTPC at 10 atm

4 Minimum transverse dimensions for STT 3.5m x 3.5m (fiducial 3.0m x 3.0m)
= Smaller size compromises e* ID, 7°/~ ID & large angle p/=

4+ Longitudinal size of 5.8m gives fiducial STT target of ~ 5m and ~ 4.5t (0.1 g/cm?)
— Try to keep fiducial mass ~ 5t for e*, 7% /~y, statistics

Roberto Petti
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v(v)-e ELASTIC SCATTERING 15

4 Benefits offered by STT:

o Statistics sufficient to measure BOTH absolute v,, flux and the corresponding energy spectrum
—> Additional constrain on relative v,, flux and neutrino energy scale,

o Excellent electron ID with TR and angular resolution to reduce backgrounds;

e Clean low background event selection.

4 Combined analysis of LAr+STT to make optimal use of all available statistics to de-
termine the neutrino energy spectrum

= STT provides background measurements to exploit the additional LAr statistics.

4 Determination of v, energy spectrum (see talk by H. Duyang):

e Promising results by fitting the 2D distribution (0., E.) of the measured electron;
e Need to apply correction for beam divergence from parent meson decays;
e Beam simulations predict uncertainty on FD/ND extrapolation < 2%

= This result implies that the uncertainty on beam divergence is under control
e Investigating possible in-situ constraints on beam divergence.
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LOW-v RELATIVE FLUX

4 Relative bin-to-bin v, flux from low-v method:
N(E,, Eyaga < 1) x @(Ey)fc(g—oy) fe—1forvyg —0

e Measurement of the relative bin-to-bin v, (v,,) flux vs. energy in ND;
e Extrapolation of flux spectra to FD/ND(E) ratio by extracting parent meson distributions.

4 Benefits offered by STT:

e Small muon energy scale uncertainty (dominant systematics) < 0.2%;,

e Fractional energy carried by neutrons in (C3Hg),, radiator target factor 2 smaller than in Ar
= Smaller uncertainty associated to the v cut & hadronic smearing

o Large statistics allowing same stringent v cut for all energies.

4 Possible to constrain in-situ neutron production:

e Use kinematics in transverse plane (pr) to reduce neutron impact;
e Constrain production of primary neutrons with exclusive resonance production;
e Calibrate neutrons with charge exchange interactions in STT.
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COHERENT 7= PRODUCTION 20

4 Coherent m* with minimal momentum transfer to nucleus | t |< 0.05 Ge\?

e Small missing pr and closest approximation to neutrino beam direction;
e Little nuclear effects compared to other channels.

4 Benefits offered by STT:

o Light isoscalar target (C) implies same neutrino and anti-neutrino cross-sections
— Most precise technique to measure the ratio v,,/v,, vs. E,

e Statistics allowing an accurate measurement of v, (coherent 7~ )

o Excellent angular & momentum resolution (t resolution) for background rejection.

4 Ongoing study to quantify the sensitivity of coherent = production to the neutrino
beam parameters (beam monitoring)
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ve/v, & v./v, FLUX RATIOS 22

4 Simultaneous fit to v,(v,) disappearance AND v.(v,) appearance samples in FD
= Key quantities to constrain are RATIOS v. /v, & U./D,

4 Nuclear effects cancel out in the ratios v,./v, & v./v,, which can be measured with
higher accuracy on light target materials.

4 Benefits offered by STT:

e Excellent e* ID with TR for background rejection;

e Large statistics of reconstructed v, CC;

o Low A target material;

o Accurate measure of all four CC spectra v,,, v, Ve, Ve constraining parent meson distributions.
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MEASURING NUCLEAR EFFECTS IN STT

4 Measurement of (anti)neutrino interactions in Ca (A = 40) and in-situ comparison of
results with the corresponding measurements in Ar.

4 Direct model-independent measurement of nuclear effects in Ar from the ratios Ar/H
and Ca/H with BOTH neutrino and anti-neutrino interactions

—> Validation of FD predictions from STT in LAr ND (+ rec. effects)

4 Dedicated measurements of nuclear effects with the complete suite of nuclear targets
(H, C3Hg, C, Ar, Ca) in STT to refine/validate nuclear modeling of interactions

e Ratios of cross-sections and structure functions for exclusive and inclusive processes
o Difference AE = E" (2 trk) — EQE(1 trk) in Quasi-elastic topologies;

rec rec
e Difference between QE cross-sections determined from 1 track and 2 track samples;
e Differences between the 2 and 3 track samples from Resonance production;
e Missing trasverse momentum in exclusive topologies;

e Backward going pions and protons.

= Systematic uncertainties on response (smearing) function Rpnys(Erec, Fy)

Roberto Petti
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SUMMARY

4+ A ND complex based upon the combination of a LAr and a low density MPT/FGT can
constrain all key factors: flux ®, cross-section ox, and response functions Rppys, Rdet

4 An effective use of MPT/FGT is to measure/constrain all (anti)neutrino fluxes & the
nuclear smearing (response function)

4 Synergies between LAr and MPT/FGT allow combined analyses & validations of
predictions (redundancy)

4+ Key measurements in MPT/FGT: v-e elastic, low-v, coherent 75, v, /v, V./1,,
nuclear effects

—> Ongoing work for STT focused on these studies and related detector performance

25

usc



Backup slides

Roberto Petti



EXPECTED STT PERFORMANCE

4 Single hit resolution < 200um
4 Time resolution ~ 1ns

4 CC-Events Vertex:
A(X,Y, Z) ~ O(100um)
4 Angular resolution: ~ 2 mrad

4 Momentum res. (p=0.1g/cm*, B=0.4T)
o Multiple scattering term | 0.05| for L = 1m

e Measurement error term | 0.006
for L =1m andp=1 GeV/c (N =50)

4 Downstream-ECAL res. ~ 6%/ E

4 et/e” down to 80 MeV from curvature
4 Protons down to ~ 200 MeV/c
4+ ¥ with at least 1 converted v (~ 50%)

Roberto Petti
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Relative efficiency of the cut|v < vq|in DUNE ND
reconstruction efficiencies not included (typically > 90% )

§ 1 T — E,<0.25GeV 1 — E,<0.25GeV,
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