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This meeting will focus on the options of the magnet, comparison of the 
performance between the low-mass tracking options, electromagentic 
calorimeters, and gain better understanding of the scientifc potenial of 

the 3-d scintillator detector and the PRISM concept in DUNE.

This workshop’s charge:

Introduction

About me: Kazuhiro Terao (Kazu), 4 yrs in 
MicroBooNE, just joined SLAC and DUNE ND. 
Interest: deep neural network (DNN) 
technique R&D for LArTPC detectors
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Disclaimer: this talk does not contain any “result,” but 
my research focus = “alternative” data reconstruction path 
using machine learning technique

+20 lbs.  
after Ph.D
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Why DNN?
• Modern solution for pattern recognition in computer 
vision (CV), the heart of LArTPC reconstruction 

• Machine learning = natural support for algorithm 
optimization. Can combine many tasks (end-to-end). 

• Works for LArTPC: demonstration in MicroBooNE

electron vs. gamma

DOI 10.1088/P03011

DNN for LArTPC Data Analysis

http://iopscience.iop.org/article/10.1088/1748-0221/12/03/P03011/meta
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• First applications in the field 
-  NoVA’s neutrino event classifier, MicroBooNE’s signal 

(neutrino) vs. background (cosmic) classifier & particle ID  
• Concern: A huge information reduction step (millions of 

pixels down to 1 variable!) makes DNN a big black box. 

Popular application: image classifier

100 cm

10
0

 c
m

Cosmic Data : Run 6280  Event 6812  
May 12th, 2016

MicroBooNE 
Collection Plane

3456 wires x 9600 ticks 
≃ 33e6 pixels (variables)

DNN for LArTPC Data Analysis



Reconstruction Using DNN
• True strengths: learns & extracts essential features 
in data for problem solving. 

• Beyond image classification: can extract “features” in 
more basic physical observables, like “vertex location”, 
“particle trajectory (clustering)”, etc. … “reconstruction”!

Yellow: “correct” 
bounding box 
Red: by the network

Network Output 
≃ 2.6m (width) x 1 m (height) MicroBooNE 

Simulation + Data Overlay

νµ

DOI 10.1088/P03011

DNN for LArTPC Data Reconstruction

http://iopscience.iop.org/article/10.1088/1748-0221/12/03/P03011/meta
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Development of chain
•  Develop DNN to perform reconstruction step-by-step 

•  Data/simulation validation at each stage  
•  Whole chain optimization (end-to-end training) by 

combining multiple networks

Vertex Detection 
Particle Clustering

Particle  
Identification

Pre-processing 
(noise removal, etc)

Track/Shower 
Separation 

w/ DNN

DATA CCπ0 Candidate Pixel-level analysis via custom CNN 

DNN for LArTPC Data Reconstruction

Real Data 
(waveform)
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Development Toward 3D Reconstruction

µ

e

Stopping muon 
in 3D viewer

Current focus: 2 types of DNNs
• Smoothing/Filtering: makes a better 3D voxel 

(point) prediction, remove/fixes “ghost points”
• 3D Pattern Recognition: find 3D interaction 

vertex + particle clustering of 3D charge depositions

Software Tools
LArCV … standalone C++ software 
with extensive Python support for image 
and volumetric (2D/3D) data storage & 
processing. Fast data loading API to 
open source DNN softwares + Qt/
OpenGL based 2D/3D data visualization

DeepLearnPhysics … github group 
supports cross-experiment software and 
DNN architecture development (link)

https://github.com/DeepLearnPhysics
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Current Status & Near Term Milestones

• Finished 3D voxel data support  
-  Trained 3D DNN for single particle ID (same as UB 

paper) with 1cm cubic voxels for ≃ 2 m3 volume (works) 

•  3D vertex finding with track/shower separation  
-  Immediate target, training starts this week 

•  3D voxel “smoothing” network 
-  Interest from wire detectors, clear path forward 
-  Need to understand more for multiplex pixel detectors 

•  3D particle clustering network 
-  Requires 3D object detection network to work first 
-  After 3D vertex finding network

Plan to benchmark performance with ArgonCUBE (LArPix/PixLAr) 
data as we go. Plan to utilize simulation tools by LBL (Dan & Chris)
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Thank you 
for 

your attention!

Any Questions
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Back ups



Convolutional 
Neural Networks 

How Does It Work?
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NCπ0
CCQE

CC1π
DIS..!
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Image Analysis: Identifying a Cat

Taken from slides by Fei-Fei’s TED talk
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Image Analysis: Identifying a Cat

Taken from slides by Fei-Fei’s TED talk

A cat = collection of certain shapes 
(object modeling in early days)
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Image Analysis: Identifying a Cat

Taken from slides by Fei-Fei’s TED talk

A cat = collection of certain shapes 
(object modeling in early days)
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Image Analysis: Identifying a Cat

Taken from slides by Fei-Fei’s TED talk

Take into account for a view point

… how about this?
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Image Analysis: Identifying a Cat

Taken from slides by Fei-Fei’s TED talk

… and maybe more shapes

… how about this?
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Image Analysis: Identifying a Cat

Taken from slides by Fei-Fei’s TED talk

… gets way worse …

… I (a human) am never taught exactly how 
cat should look like by anyone, but I somehow 

can recognize them really well.
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Image Analysis: Identifying a Cat

Taken from slides by Fei-Fei’s TED talk

… gets way worse …

A breakthrough: a machine learning algorithm 
that forms (trains) itself by sampling a large set 

of data to “learn” how cat looks like (distribution)



Introduction to CNNs (I)

Image 
Classification

19

Pixel Classification

Context Analysis Image 
Classification

self-driving car, 
image captioning, 

playing a boardgame, 
… and more!



⟶

x0 
 

Background: Neural Net

The basic unit of a neural net 
is the perceptron (loosely 
based on a real neuron) 

Takes in a vector of inputs (x). 
Commonly inputs are summed 
with weights (w) and offset (b) 

then run through activation.
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Introduction to CNNs (II)



21

By picking a value for w and b,  
we define a boundary  

between the two sets of data

Perceptron 2D Classification

from wikipedia

[ x0 
 

x1 
 

∑0

Output

[ 

cat 
dog

Imagine using two features to separate cats and dogs

∑0

Introduction to CNNs (II)

0

https://en.wikipedia.org/wiki/Perceptron
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Maybe we need to do better: assume new data point  
(My friend’s dog — small but not as well behaved) 

Perceptron 2D Classification

from wikipedia

∑0

Introduction to CNNs (II)
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[ x0 
 

x1 
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Output
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cat 
dog

(Thor)

https://en.wikipedia.org/wiki/Perceptron
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Maybe we need to do better: assume new data point  
(My friend’s dog — small but not as well behaved) 

We can add another perceptron 
to help (but does not yet solve 

the problem)

Perceptron 2D Classification

x0 
 

x1 
 

from wikipedia

∑0

∑1

∑0

∑1

Introduction to CNNs (II)

0

(Thor)

https://en.wikipedia.org/wiki/Perceptron


[ 
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(Thor)

Perceptron 2D Classification

x0 
 

x1 
 

Output

[ 

cat 
dog∑1

∑0

∑0

∑1

∑2

∑2

Another layer can classify based on  
preceding feature layer output

Maybe we need to do better: assume new data point  
(My friend’s dog — small but not as well behaved) 

Introduction to CNNs (II)



Fully-Connected Multi-Layer Perceptrons

A traditional neural network consists of a stack of layers of such 
neurons where each neuron is fully connected to other neurons of 
the neighbor layers
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Introduction to CNNs (III)
“Traditional neural net” in HEP



Problem: scalability

Feed in entire image

Use pre-determined features

Problem: generalization

Cat?

Cat?
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Introduction to CNNs (III)
“Traditional neural net” in HEP

Problems with it…



CNN introduce a limitation by forcing the network to 
look at only local, translation invariant features

input feature map
hidden  
layers

~x

input  
layer,   

output  
layer,   ~y

(a) Feed-forward neural network (b) Feed-forward neural network

neuron Activation of a neuron depends 
on the element-wise product of 
3D weight tensor with 3D input 

data and a bias term

27

• Translate over 2D space to process the whole input 
• Neuron learns translation-invariant features 
• Applicable for a “homogeneous” detector like LArTPC

Introduction to CNNs (III)

Want more details?  
Feel free to ask me later!



Toy visualization of the CNN operation
28

Convolutional Neural Networks
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Introduction to CNNs
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Introduction to CNNs
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Toy visualization of the CNN operation
29

Convolutional Neural Networks
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Introduction to CNNs

Image

Genty

N Filters

D
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Feature Maps

many weights!

apply 
many filters

Toy visualization of the CNN operation
30

Convolutional Neural Networks



After 
1st convolution

After 
2nd convolution

After 
3rd convolution

Feature extraction by CNN

Feature extraction by CNN

“Written Texts” 
feature map

“Human Face” 
feature map

How Classification Network Works

After steps of down-sampling, 
“feature map” still preserves a 

rough object location information
31



How SSNet Works
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feature
tensor

Intermediate, low-resolution 
feature map

Goal: recover precise, pixel-level location of objects 
1. Up-sampling 
-  Expand spatial dimensions of feature maps 

2. Convolution 
-  Smoothing (interpolation) of up-sampled feature maps


