

3D Pattern Recognition
Using
Deep Neural Networks
for
Liquid Argon Time Projection Chambers
(LArTPCs)

Kazuhiro Terao SLAC National Accelerator Laboratory

Introduction

This workshop's charge:

This meeting will focus on the options of the magnet, comparison of the performance between the low-mass tracking options, electromagentic calorimeters, and gain better understanding of the scientifc potential of the 3-d scintillator detector and the PRISM concept in DUNE.

Disclaimer: this talk does not contain any "result," but my research focus = "alternative" data reconstruction path using machine learning technique

+20 lbs. after Ph.I

About me: Kazuhiro Terao (Kazu), 4 yrs in MicroBooNE, just joined SLAC and DUNE ND.

Interest: deep neural network (DNN) technique R&D for LArTPC detectors

DNN for LArTPC Data Analysis

Why DNN?

- Modern solution for pattern recognition in computer vision (CV), the heart of LArTPC reconstruction
- Machine learning = natural support for algorithm optimization. Can combine many tasks (end-to-end).
- Works for LArTPC: demonstration in MicroBooNE

electron vs. gamma

DNN for LArTPC Data Analysis

Popular application: image classifier

- First applications in the field
 - NoVA's neutrino event classifier, MicroBooNE's signal (neutrino) vs. background (cosmic) classifier & particle ID
- Concern: A huge information reduction step (millions of pixels down to 1 variable!) makes DNN a big black box.

MicroBooNE Collection Plane

3456 wires x 9600 ticks ≈ 33e6 pixels (variables)

DNN for LArTPC Data Reconstruction

Reconstruction Using DNN

- True strengths: learns & extracts essential features in data for problem solving.
- Beyond image classification: can extract "features" in more basic physical observables, like "vertex location", "particle trajectory (clustering)", etc. ... "reconstruction"!

DNN for LArTPC Data Reconstruction

Development of chain

Develop DNN to perform reconstruction step-by-step

Pre-processing (noise removal, etc)

Vertex Detection Particle Clustering

Particle Clustering

- Data/simulation validation at each stage
- Whole chain optimization (end-to-end training) by combining multiple networks

Development Toward 3D Reconstruction

Current focus: 2 types of DNNs

- Smoothing/Filtering: makes a better 3D voxel (point) prediction, remove/fixes "ghost points"
- 3D Pattern Recognition: find 3D interaction vertex + particle clustering of 3D charge depositions

Software Tools

LArCV ... standalone C++ software with extensive Python support for image and volumetric (2D/3D) data storage & processing. Fast data loading API to open source DNN softwares + Qt/ OpenGL based 2D/3D data visualization

DeepLearnPhysics ... github group supports cross-experiment software and DNN architecture development (link)

Current Status & Near Term Milestones

Finished 3D voxel data support

- Trained 3D DNN for single particle ID (same as UB paper) with 1cm cubic voxels for ≈ 2 m³ volume (works)
- 3D vertex finding with track/shower separation
 - Immediate target, training starts this week
- 3D voxel "smoothing" network
 - Interest from wire detectors, clear path forward
 - Need to understand more for multiplex pixel detectors
- 3D particle clustering network
 - Requires 3D object detection network to work first
 - After 3D vertex finding network

Plan to benchmark performance with ArgonCUBE (LArPix/PixLAr) data as we go. Plan to utilize simulation tools by LBL (Dan & Chris)

Back ups

Convolutional Neural Networks How Does It Work?

A cat = collection of certain shapes (object modeling in early days)

A cat = collection of certain shapes (object modeling in early days)

Image Analysis: Identifying a Cat ... how about this?

Take into account for a view point

Image Analysis: Identifying a Cat ... how about this?

... and maybe more shapes

... gets way worse ...

... I (a human) am never taught exactly how cat should look like by anyone, but I somehow can recognize them really well.

... gets way worse ...

A breakthrough: a machine learning algorithm that forms (trains) itself by sampling a large set of data to "learn" how cat looks like (distribution)

Introduction to CNNs (I)

self-driving car, image captioning, playing a boardgame, ... and more!

Introduction to CNNs (II)

Background: Neural Net

The basic unit of a neural net is the *perceptron* (loosely based on a real neuron)

Takes in a vector of inputs (x). Commonly inputs are summed with weights (w) and offset (b) then run through activation.

Imagine using two features to separate cats and dogs

from wikipedia

$$\sigma(\vec{x}) = \begin{cases} \vec{w}_i \cdot \vec{x} + b_i & \vec{w}_i \cdot \vec{x} + b_i \ge 0 \\ 0 & \vec{w}_i \cdot \vec{x} + b_i < 0. \end{cases}$$

By picking a value for w and b, we define a boundary between the two sets of data

Maybe we need to do better: assume new data point (My friend's dog — small but not as well behaved)

from wikipedia

Maybe we need to do better: assume new data point (My friend's dog — small but not as well behaved)

from <u>wikipedia</u>

We can add another perceptron to help (but does not yet solve the problem)

Maybe we need to do better: assume new data point (My friend's dog — small but not as well behaved)

Another layer can classify based on preceding feature layer output

Introduction to CNNs (III) "Traditional neural net" in HEP Fully-Connected Multi-Layer Perceptrons

A traditional neural network consists of a stack of layers of such neurons where each neuron is *fully connected* to other neurons of the neighbor layers

Introduction to CNNs (III)

"Traditional neural net" in HEP **Problems with it...**

Feed in entire image

Problem: scalability

Use pre-determined features

Problem: generalization

Introduction to CNNs (III)

CNN introduce a *limitation* by forcing the network to look at only local, translation invariant features

$$f_{i,j}(X) = \sigma(W_i \cdot X_j + b_i),$$

Activation of a neuron depends on the element-wise product of 3D weight tensor with 3D input data and a bias term

- Translate over 2D space to process the whole input
- Neuron learns translation-invariant features
- Applicable for a "homogeneous" detector like LArTPC

Convolutional Neural Networks

Toy visualization of the CNN operation

Convolutional Neural Networks

Toy visualization of the CNN operation

Convolutional Neural Networks

Toy visualization of the CNN operation

How Classification Network Works

How SSNet Works

Goal: recover precise, pixel-level location of objects

1. Up-sampling

- Expand spatial dimensions of feature maps

2. Convolution

- Smoothing (interpolation) of up-sampled feature maps

