R&D for the DUNE ND ECAL

- Status at MPP -

Frank Simon
Max-Planck-Institute for Physics

showing work together with **Lorenz Emberger** (MPP)

DUNE Near Detector Workshop, CERN, November 2017

Scope & Disclaimer

- Have started a first simulation study at MPP at the moment one MSc student
- As a first step: Study possible benefits of granularity
- New addition since August: Different absorber materials, different readout granularity
 - Not yet realistic no digitization, noise, etc included
- In parallel some first hardware studies are beginning building on overlap with CALICE activities at MPP

Hope to get feedback on where to take this study!

Setting the Stage: Neutral Pions in the ND

One of the primary goal of the ND ECAL is the measurement of neutral pions in v

Preliminary, rough Detector Concept

- Sampling structure roughly based on CDR geometry:
 - 1 cm plastic scintillator between absorber plates

Absorber scenarios:

CDR: 1.75 mm Pb

also studied: 1 mm Pb, 2 mm Cu

2D segmentation of active layer *idealized* (and currently simulated)

possibly more realistic:

Orthogonal crossed strips, with embedded WLS for light collection, SiPM readout on both ends, strip segmentation potentially with "megatile" solution

hardware R&D starting at MPP

The Simulation Study

- Simulations using GEANT4 10.03
- Simple layer structure, for now one calorimeter segment
 - 50 layers, 1 x 1 m² some studies also with 100 layers to reduce leakage
 - 1, 1.75 mm lead absorber, 2 mm Cu absorber per layer
 - 10 mm plastic scintillator
 - Different granularity simulated tile sizes to fit into 1 m²:
 10 x 10, 20 x 20, 25 x 25, 40 x 40, 50 x 50 mm²
- Very simplified photon reconstruction:
 - Layer-wise formation of center-of-gravity (calculated from all cell in a layer that have some energy - not cutoff at present)
 - 3D Straight-line fit through COGs (weighted by energy deposit) to get "photon vector"
 - For π⁰ event reconstruction: Using MC truth information to assign calorimeter cells to photons

Simulations: Single y Events

1.75 mm Pb absorber

Simulations: Single y Events

1.75 mm Pb absorber

Simulations: Single y Events

Simulations: Single π⁰ Events

 Deposits by the two photons separated using truth information in GEANT4 (propagating parent photon info through tracking)

photon 1photon 21.75 mm Pb absorber

Simulations: Single π⁰ Events

 Deposits by the two photons separated using truth information in GEANT4 (propagating parent photon info through tracking)

1.75 mm Pb absorber

Simulations: Single π⁰ Events

Deposits by the two photons separated using truth information in GEANT4 (propagating parent photon info through tracking)

15 10

5-

100⁰-100⁸⁰ 80 70 60 50 40 30 20 10 0

10

90 100

40 50 60 70

Figure of Merit: Angular Resolution

- Extrapolating the reconstructed photon direction (3D line fit) to a plane 1 m from the the calorimeter front face
- Resolution given as the RMS of the deviation from the true position divided by true distance along photon direction

Comparing Different Geometries: Absorber Type

• Baseline: 1 mm Pb, cell size 20 x 20 mm²

Effect of Absorber material and thickness

Thinner absorbers (in units of X₀) results in better resolution - no surprise!

Advantage Cu:
probably a geometrical effect
- comparable absorber X₀ in
for both materials, 10% larger
"lever arm" with Cu

Comparing Different Geometries: Granularity

• Baseline: 1 mm Pb, cell size 20 x 20 mm²

Effect of detector granularity

• N.B.: No digitization, no thresholds, no noise in current simulation

Higher granularity better with thin absorbers
indications of saturation when
going below 2 cm edge
length

Advantage Cu: probably a geometrical effect - comparable absorber X₀ in for both materials, 10% larger "lever arm" with Cu

Comparing Different Geometries: Energy Resolution

- A first look at the raw energy resolution based on energy deposited in scintillator, ignoring any form of detector effects
 - Realistic resolutions probably ~ x2 worse
 - Here: 100 layers deep calorimeter to ensure containment

- CDR geometry:
 - ~ 5% stochastic term
- 1 mm Pb absorbers
 - ~ 3.3% stochastic term
- 2 mm Cu absorbers
 ~3.6% stochastic term

- Simple neutral pion reconstruction:
 - Straight-line fit of each of the photons
 - Take π^0 position as the point of closest approach of the two lines, taking into account the expected resolution depending on photon energy

• 300 MeV π^0 , 1 m away from calorimeter

 Distance of reconstruction origin position from true π⁰ origin: median ~ 60 mm

Hardware R&D: Scintillator Elements

- The most likely solution to achieve effective granularities of 2 x 2 cm²: crossed strip readout
 - Standard solution: Individually packaged scintillator bars
- Currently studying alternative techniques to obtain strip segmentation in larger scintillator plates: Subsurface laser engraving

Hardware R&D: Scintillator Elements

 WLS fibers inserted in first prototype (1 cm spacing), coupling mechanics to SiPM readout available, preamp board in production

- subdivision semi-transparent
 - sharing of light across multiple strips, possibly provides sub-strip spatial resolution

Hardware R&D: Scintillator Elements

Hardware Studies

- Builds on CALICE activities expertise in development and readout of small scintillator tiles with SiPMs
 - High speed digitizer readout:
 Will also provide results on time resolution
 - Studying different scintillator materials
 - PVT as a first step
 - PEN prototypes coming soon
 - also considering others, such as PMMA
- Longer term: Have to develop a readout scheme suitable for more than a handful of channels - will also depend on final ND requirements
 - Waveforms over extended periods?
 - Time-stamped hits?

• ...

Scintillator cells used for SuperKEKB commissioning

Conclusions & Next Steps

- A certain degree π⁰ location accuracy can be achieved with a relatively granular ECAL
 - Thinner absorbers, higher effective granularity helps for photon pointing accuracy

Next:

- Introduce energy cuts per cell to add realism (with input from hardware R&D)
- Potentially more robust cluster definition still exploring ideas
 - possibly improve shower direction reconstruction (more sophisticated fit)
- Explore more complex geometries:
 - Varying longitudinal sampling to address real-world space constraints while keeping resolution for low-energy photons
 - Study impact of dead region within ECAL: Pressure vessel of HP-TPC
- Extend π⁰ study explore full relevant energy range
- Look at neutrons
- First hardware studies

