Em Calorimetry in KLOE

Sergio Bertolucci University of Bologna and INFN

The KLOE calorimeter

Pb - scintillating fiber sampling calorimeter:

- 1 mm diameter sci.-fi. (Kuraray SCSF-81 and Pol.Hi.Tech 0046)
 - Core: polystyrene, ρ =1.050 g/cm³, n=1.6, $\lambda_{peak} \sim 460$ nm
- 0.5 mm groved lead foils
- Lead:Fiber:Glue volume ratio = 42:48:10
- $X_0 = 1.6 \text{ cm} \quad \rho = 5.3 \text{ g/cm}^3$
- Calorimeter thickness = 23 cm
- Total scintillator thickness ~ 10 cm

Electromagnetic calorimeter

24 barrel modules 60 cells (5 layers) 4.3m length

2440 cells total

2 × 32 endcap modules 10/15/30 cells

4880 channels

Calorimeter performances KLOe Neutron Efficiency

 Operated from 1999 to now with good performance and high efficiency for electron and photon detection, and also good capability of π/μ/e separation

Energy resolution:

$$\sigma_{\rm E}/{\rm E}$$
=5.7%/ $\sqrt{{\rm E}({\rm GeV})}$

(see KLOE Collaboration, NIM A482 (2002),364)

EMC mass reconstruction

$$\phi \rightarrow \pi^{+}\pi^{-}\pi^{0}$$

$$M = 134.5 \text{ MeV}$$

$$M(\pi^{0} \rightarrow \gamma \gamma) \quad \sigma_{M} = 14.7 \text{ MeV}$$

$$\phi \rightarrow \eta \gamma$$

$$M = 546.3 \text{ MeV}$$

$$M(\eta \rightarrow \gamma \gamma) \quad \sigma_{M} = 41.8 \text{ MeV}$$

$$\phi \rightarrow \eta \gamma$$
 $M = 546.3 \text{ MeV}$
 $M(\eta \rightarrow \gamma \gamma) \sigma_M = 41.8 \text{ MeV}$

EMC mass reconstruction

 K_S mass from photon energies in $K_S \to \pi^0 \pi^0$ events.

EMC time-of-flight measurement

 μ mass from TOF Fit to β vs $p_{\rm DC}$ gives

 $m_u = 105 \text{ MeV}/c^2$

 T_1 - T_5 distribution can distinguish incoming/outgoing μ 's

Used to reject cosmic rays

$$\beta = L/\Delta T$$

$$L \text{ from DC}$$

EMC timing performances

 β of K_L interacting in the calorimeter

Neutron efficiency

- $E_{peak} = 180 \text{ MeV}$
- Stable for different run conditions
- Very high efficiency w.r.t.
 the naive expectation
 (~10% @ 2 MeV thr.)

Comparison with our scintillator normalized to the same active material thickness

Figure 1: Schematic view of the KLOE detector

R&D on a new detector concepts

Lens + SiPM array

Matteo Tenti Nicoletta Mauri Michele Pozzato

Example: $v_{\mu}CC$ with $E_{\nu} = 2.44$ GeV [YZ view]

n. of photons/SiPM

SiPM size: 1 x 1 mm²

Distance between lens and SiPM plane: 4.4 cm

Coded Aperture Imaging

MURA mask

M. Salmnan Asif et al arXiv:1509.00116

Underway or in the near future

- ☐ Detailed simulation studies of the ND concept
- ☐ Detailed simulations of the LAr detector with optical readout
- ☐ Construction of a demonstrator
- ☐ Continue R&D for smaller feature SiPMs
- □ Data driven assessment of the aging of the KLOE calorimeter in the last 20 years.
- ☐ Assessment of the lifetime cycle of the KLOE Coil (with Oxford Instruments)

THANK YOU