GENIE Events in LAr and GAr

Tom Junk and Minerba Betancourt DUNE Near Detector Workshop, CERN November 6, 2017

Suggestions from Jen

- GAr has longer tracks for the same momentum: lower threshold for detection
- Differential measurements easier in GAr than LAr for low-energy recoils
- Run some GENIE MC and look at a few events' MC Truth. Suggested CC 1 pi and multi-pi events.
- Try with a magnetized GAr detector. 0.5 T

Example from the LBNO ND Description Technote

E. Noah, A. Curioni, Y. Karadzhov, T. Stainer, A. Blondel

Figure 6: Comparing quasi-elastic charged current interactions in liquid and gas argon. The three protons from the interaction vertex are apparent in the GAr TPC, but cannot be resolved in the LAr.

Using LArSoft for this

- There's already a GENIE and GEANT4 interface
- Convenient geometry: 1x2x6 Far Detector Workspace.
- Too big! Each APA is 6 m high and 2.5 m wide, 2x 3.6m drift total: 7.2 m x 12 m x 15 m

• LAr with density 1.4 g/cm³, or GAr with 0.0178 g/cm³

GENIE and Event Displays

- Ran GENIE with v_e events (CC+NC) with the DUNE ND spectrum.
- Ran GEANT4 to simulate Unmagnetized LAr and GAr+magnetic field (0.5 tesla, along x)
- Used gallery to make displays of MCParticle trajectory points
- Trimmed the events to ±250 cm in each direction from the primary vertex
- Colors:

Black: muons

Blue: protons

Red: charged pions

Magenta: electrons

Cyan: charged kaons

Green: neutrons (when shown)

First Event: v_e CC+3p+1 charged pi

GAr + 0.5 T BField

Axis scale: cm

Black: muons Blue: protons Red: charged pions Magenta: electrons Hadronic activity more visible in GAr. Electron not contained.

First Event: Zoom-In LAr

It was pointed out last time that LAr should be zoomed in a bit. Choose factor of 5

Same initial GENIE four-vectors. Extra proton(s) in LAr from a neutron scatter

Second Event: Neutral Current

Blue: protons Red: charged pions Magenta: electrons

GAr + 0.5 T BField

Possibly with a pizero

11/6/2017

Second Event, Showing Neutrons

Blue: protons
Red: charged pions
Magenta: electrons
Green: Neutrons

zoomed-out LAr. Zoom-in is also cluttered.

Neutrons are responsible for displaced hadronic activity in both detectors

Third Event: Clean v_eCC

Blue: protons Red: charged pions Magenta: electrons

Fourth Event: "Trident" in GAr

Even in GAr, the electron starts showering early and the sign can be ambiguous. In collders, we called these "Trident" events

Fifth Event

Blue: protons Red: charged pions Magenta: electrons

Sixth Event: Showering in GAr

Blue: protons Red: charged pions Magenta: electrons

11/6/2017

A Clean v_eCC

GAr + 0.5 T BField

Blue: protons Red: charged pions Magenta: electrons

Photons from pizero decay did not convert in GAr. Need ECAL! Also a neutron knocked off the proton in LAr but not GAr

Sometimes you only get the lepton

Question: This might have more NC background – photon conversion + nothing

An Event with a Charged Kaon

Blue: protons Red: charged pions Magenta: electrons Cyan: charged kaons

Another NC Event

Blue: protons Red: charged pions Magenta: electrons

Another NC Event (in the ν_{μ} sample) with Lots of Hadronic Activity

Black: muons Blue: protons Red: charged pions Magenta: electrons

Muons from Pion Decay in GAr

Black: muons Blue: protons

Red: charged pions Magenta: electrons

GAr + 0.5 T BField

 v_e CC event with a muon and a Michel e. Probably pion decay at rest near the vertex GAr + 0.5 T BField

 \boldsymbol{v}_{μ} CC event with two muons! You can see the pion track before it decays into one of them

Comments

- Track lengths are great for low-energy particles in GAr compared with LAr
- With a drift velocity of 5 cm/ μ s, Michel electrons will appear displaced from a stopping muon by an average of 10 cm.
- Separation of μ^{\pm} from π^{\pm} over the momentum range of interest will require muon chambers outside of the GAr
- ECAL is necessary for π^0 measurement, and help with showering electrons. GArTPC+ECAL will make independent measurements of rates of events with π^0 s in them.
- Containment not expected in 5 m cube of GAr
- Very low-energy particles may turn around and go back in the B field before hitting the ECAL
- Low-energy particles spiral around magnetic field lines. Pileup of signals on just a few pads? Saturation? They spread out in time though.
- Fewer neutrons will interact in GAr calorimeter can help?

