Sensitivity study of DUNE-PRISM

Guang Yang

We are trying to do a ND+FD fit.

- ND and FD have same flux+xsec shifts (systematics "canceled").
- ND and FD have same distortion in fake data.
- See if this make immune to having biased OA results.

ND should be designed to identify model issues.

- If current model is not good enough to cover the data/MC discrepancy in ND, we will update the model.

However, it is also possible that ND cannot identify model issues that ND data/MC agreement looks good..

However, an off-axis detection can tell the issue.

For example, if we miss a fraction of neutrino energy: For on-axis measurement, nu spectrum shift to the left and by changing xsec parameters, We can find good agreement in on-axis measurement.

For off-axis measurement, nu spectrum shift to the left and The on-axis best fit parameters higher up off-axis prediction, which gives big discrepancy between prediction/measurement.

Introduction (3)

Framework: "Official" CafAna fitter in DUNE

Statistics: based on 7 year operation of ND and FD,

with 40kton FD and 100 ton ND. (1.47 POT/year)

Systematics: Flux + Xsec + user defined

Lepton energy may be well understood, but hadronic energy may cause problems.

Tested Fake data samples (From GENIE):

- 1. 10% and 20% missing proton energy
- 2. 10% and 20% missing charged pion energy

We are showing the missing charged pion energy case here.

Missing proton energy case tends to have a similar result.

Fitting samples

- Try to do Full ND+FD fit that DUNE may eventually do.
- ND: FHC and RHC
- FD: FHC numu, nue and RHC numu and nue
- Variables: oscillation parameters. Systematics variables:

 - 32 Xsec variables (in official Cafana)
 - First 5 Flux variables (in official Cafana)
 - 2% Energy scale and 6% energy resolution (in official Cafana)
 - many variables introduced by me (fake data variables..) "One sigma" means the standard variation in fake data.

FD+ND fit with Xsec+Flux systematics 20% Missing charged pion energy

FD+ND fit with Xsec+Flux systematics 20% Missing charged pion energy

Reconstructed energy (GeV)

Reconstructed energy (GeV)

FD+ND fit with Xsec+Flux systematics 20% Missing charged pion energy Off-axis FHC

Black: nominal 30mrad (1.7 degree) off-axis

Blue: with on-axis best fit

Red: real 20% MPE

Summary

- Even with identical ND and FD response, we may have oscillation parameter bias with a good ND prediction/data agreement.
- DUNE-prism may identify the problem of mis-modeling.
- With multiple off-axis, we may be able to "calibrate" the energy spectrum.

Next:

- Try to build FD prediction based on ND off-axis positions. We expect that this way can make immune to such a bias.
- May consider introduce some more energy-dependent systematics.

Backup..

FD+ND fit with Xsec+Flux systematics 10% Missing charged pion energy

FD+ND fit with Xsec+Flux systematics 10% Missing charged pion energy

Reconstructed energy (GeV)

Reconstructed energy (GeV)

FD+ND fit with Xsec+Flux systematics 10% Missing charged pion energy 30 mrad off-axis FHC

Black: nominal 30mrad off-axis

Blue: with on-axis best fit

Red: real 10% MPE

Black: nominal 45mrad off-axis

Blue: with on-axis best fit

Red: real 10% MPE

vorkshop

Xsec ND FHC

Xsec ND RHC

Xsec FD nue FHC

Flux systematics ND FHC

Flux systematics ND RHC

With Luke's variation and without systematics, the true values cannot be recovered.

Nov.7 2017

DUNE ND workshop

With Luke's variation and without systematics, the true values cannot be recovered.

With Luke's variation and with the variation inserted as a systematic pull, the true values can be recovered.

27

With Luke's variation and with the variation inserted as a systematic pull, the true values can be recovered.

Xsec systematics (32)

Cross section systematics

- 32 "VALOR categories"
- With covariance matrix

/dune/data/users/marshalc/

total_covariance_XS.root

Correlations are included!

From Chris Backhouse

Component	Magnitude	Comment
ν CCQE 1	8.2%	$Q^2 < 0.2$
ν CCQE 2	23%	$0.2 < Q^2 < 0.55$
ν CCQE 3	48%	$Q^2 > 0.55$
$\bar{\nu}$ CCQE 1	8.7%	$Q^2 < 0.2$
$\bar{\nu}$ CCQE 2	24%	$0.2 < Q^2 < 0.55$
$\bar{\nu}$ CCQE 3	40%	$Q^2 > 0.55$
ν MEC dummy	100%	-
$\bar{\nu}$ MEC dummy	100%	-
ν CC1 π^0 1	13%	$Q^2 < 0.35$
ν CC1 π^0 2	23%	$0.35 < Q^2 < 0.90$
ν CC1 π^0 3	35%	$Q^2 > 0.90$
ν CC1 π^{\pm} 1	13%	$Q^2 < 0.30$
ν CC1 π^{\pm} 2	24%	$0.30 < Q^2 < 0.80$
ν CC1 π^{\pm} 3	40%	$Q^2 > 0.80$
$\bar{\nu}$ CC1 π^0 1	16%	$Q^2 < 0.35$
$\bar{\nu}$ CC1 π^0 2	27%	$0.35 < Q^2 < 0.90$
$\bar{\nu}$ CC1 π^0 3	35%	$Q^2 > 0.90$
$\bar{\nu}$ CC1 π^{\pm} 1	16%	$Q^2 < 0.30$
$\bar{\nu}$ CC1 π^{\pm} 2	30%	$0.30 < Q^2 < 0.80$
$\bar{\nu}$ CC1 π^{\pm} 3 3	40%	$Q^2 > 0.80$
$\nu 2\pi$	22%	
$\bar{\nu} 2\pi$	22%	-
ν DIS 1	3.5%	$E_{\nu} < 7.5$
ν DIS 2	3.5%	$7.5 < E_{\nu} < 15$
ν DIS 3	2.7%	$E_{\nu} > 15$
⊽ DIS 1	1%	$E_{\nu} < 7.5$
ν̄ DIS 2 ν̄ DIS 3	1.7% 1.7%	$7.5 < E_{\nu} < 15$ $E_{\nu} > 15$
ν COH	128%	$E_{\nu} > 15$
ν COH ν COH	134%	-
ν NC	16%	_
₽NC	16%	_
ν_e/ν_μ dummy	3%	Not implemented yet

Flux Systematics (10)

Covariance matrix

- ► Eigenvalues 108+ should be zero. Floating precision → some negative
- ▶ Limit eigenvalues to 10^{-14} . $M = V^T \Lambda V$, $M \to V^T \Lambda' V$

Systematics

- An ISyst modifies or weights an event record as it's being loaded in
- Optional argument to Spectrum constructor taking a SystShifts
- PredictionInterp takes Predictions with various systematics applied and uses cubic interpolation between them
- If you only need scale systematics try PredictionScaleComp
- NOvA heritage means this machinery is a bit FD-centric (though ND sterile analyses have worked out), focus of upcoming development

1101.1 5011

Cross-sections

- ▶ Scale each vector by corresponding eigenvalue $\vec{v_i} \rightarrow \sqrt{\lambda_i} \vec{v_i}$
- ▶ Check normalization: $\vec{v}_i^T M^{-1} \vec{v}_i = 1$
- ► Check orthogonality: $(\vec{v}_i + \vec{v}_j)^T M^{-1} (\vec{v}_i + \vec{v}_j) = 2$
- Divide by flux to express as fractional error and save to root file