

Near Detector Status Report

Alfons Weber University of Oxford & STFC/RAL

LBNC Meeting CERN

Near Detector Concept Study

- Charge
 - Develop a proposal for a DUNE collaboration near detector concept by the end of 2017.
- Study should
 - Ensure that the proposed near detector concept meets the requirements of the primary scientific goals of DUNE.
 - Assume a single near detector hall of a similar to the CD-1-R design, located at a distance of between 360 m and 575 m from the target.
 - Present a plausible funding model for the proposed concept, based on the interests and likely contributions to the detector construction from the international collaboration.
 - Focus solely on the design of the Near Detector; the scope of the study does not extend to the design of the LBNF near site facility

Organizational Updates

- Near Detector Coordination
 - Appointed in April: Alfons Weber
- Additional workshops to support discussions and progress
 - November at CERN

Major Milestones

Q1/2017: 1st ND design workshop at FNAL

Q2/2017: 2nd ND workshop at FNAL

Q3/2017: narrow down ND options (on track)

Q4/2017: 3rd ND workshop at CERN (on track)

Q4/2017: Concept for ND agreed (Q1/2018)

Including plausible funding model

Q4/2018: ND CDR (on track)

Q1/2020: ND TDR available for review in August (on track)

Q4/2026: ND ready for beam (on track)

Risks

- Initial thoughts
 - Can't agree concept
 - Can't fund agreed concepts —
 - Decision Schedule is too aggressive _
 - Agreed/needed ND concept requires major/expensive changes to ND facilities
 - Fundable/buildable ND will not be able to do physics

Status

Options studied by ND TF

OXFORD

Science & Technology Facilities Council Rutherford Appleton Laboratory

ND Group is following charge

- Several productive workshops
 - CERN kick-off. Jan 2017
 - 1st ND workshop, Mar 2017, FNAL
 - 2nd ND Workshop, Jun 2017, FNAL
 - 3rd ND Workshop, Nov 2017, FNAL
- Aim
 - Fulfil charge and suggest buildable concept to collaboration

science & Technology Facilities Council Rutherford Appleton Laboratory

Pixel Readout Events

Status and Outlook

- Cryostat and module material test successfully completed (Oct 2016)
- Lightweight simulation framework summer 2017
- First TPC deployment summer 2017, pending updates to the cryogenic infrastructure.
- Pixel scalability, Light readout & field shaping studies summer 2017.
- LArPix tests spring 2018.
- Fully instrumented module deployment 2018

OXFORD

LAr Detector

Muon detector? Magnetized tracker LAr TPC i.e. FGT, scintillator, HP Ar gas TPC, **MINOS-like**, etc. **Muon detector?**

Needs to be combined with downstream and side muon detectors

Bigger detector increases acceptance, but not phase space coverage

 $2x2x4 m^{3}$

OXFORD

icience & Technology Facilities Council Rutherford Appleton Laboratory

OXFORD

cience & Technology Facilities Council Rutherford Appleton Laboratory

Magnet is this model is 6.5m diameter and 7 m long Maximize acceptance for μ from Lar

Coil could become pressure vessel

Straw Tube Tracker

- Function
 - Use as spectrometer for LAr
 - LAr provides in-situ check of STT prediction
 - lindependent neutrino electron measurements
- Statements
 - 3.5 x 3.5 m² is absolute minimal transverse dimension
 - 4.5 m is minimum length

3D Scintillator Tracker

Several options studied for T2K/ND280 upgrade

3mm thin scintillator bar made @ Fermi-lab is used.

Super FGD

https://indico.cern.ch/event/633840/timetable/ Please check the section "Super-FGD"

Science & Technology Facilities Council Rutherford Appleton Laboratory

OXFORD

Other Hybrids (I)

magnetized

Other Hybrids (II)

magnetized

Magnets (I)

Dipole ala UA1/NOMAD/ND280 •

\$ Million	Your	Base Cost	This review		
Design	\$	1.44	\$	3.24	
Procurement and Fabrication	\$	6.54	\$	10.78	
Assembly and Installation	\$	0.62	\$	0.94	
Total	\$	8.60	\$	14.96	
Materials					
Yoke Steel	\$	2.04	\$	1.64	
Coil Aluminum	\$	0.35	\$	0.38	
Fabrication					
Yoke Steel	\$	2.00	\$	1.56	
Coil	\$	0.70	\$	0.52	
Controls					
Power Supply	\$	0.65			
Cooling System	\$	0.30			

Magnets (II)

Solenoid Costs

- B=0.5T, inner diameter= 6.5 m, L=7m
- Updated Herve Model
- P(\$) = P₀ + P_E [Cost for mechanics (B=0) + Cost for B]
- $P(M\$) = 0.33S^{0.8} + 0.17E^{0.7}$
 - $S(m^2)$ surface area of cryostat: ~ 143 m²
 - E(MJ) is the stored energy $\sim 23MJ$
- P~19M\$
- Alternative model
 - ~ 10M\$ (E); 15M\$ (BV)
- Average of two models: \$17M
 - Similar in cost to the UA1-like magnet

			ALEPH	CMS	GEM
Mean radius of winding	R	m	2.65	3.2	9
Length of vacuum tank	L	m	7	14.5	27
Mean surface of vacuum tank	S	m ²	128.2	320.7	1526
Mean magnetized volume	V	m ³	154.4	466.5	6870
Central induction	В	Т	1.5	4	0.8
Energy	E	MJ	138	2969	1749
P ₀		MCHF	16.0	33.4	116
Ρ		MCHF	21.4	79.2	147
P ₀		M\$	10.7	22.2	77.3
Ρ		M\$	14.3	52.8	98

OXFORD

Science & Technology Facilities Council Rutherford Appleton Laboratory

DUNE-PRISM

- Energy Spectrum changes with offaxis angle
 - Can be used for direct extrapolation
 - Mono-energetic beams

- Controlled change of flux
 - Additional handle on cross section and other measurements

OXFORD

Science & Technology Facilities Council Rutherford Appleton Laboratory

Conventional Facilities

science & Technology Facilities Council Rutherford Appleton Laboratory OXFORD

Conclusions

Preliminary Conclusions (I)

- ArgonCube Detector
 - Not magnetized
 - Size: **3x3x4** m³ (to be optimised)
 - Functionally coupled to MPT
- MPT \Leftrightarrow high resolution detector is needed in addition
 - Magnetized (dipole or solenoid?)
 - STT or HPTPC

Preliminary Conclusion (II)

- Location
 - Case for 370 m not yet made
 - ~ M\$ 25 more expensive
 - Not significantly better physics performance
 - Only high stat neutrino-electron scattering (beam divergence needs to be understood)
 - Near-to-far extrapolation similar to standard location

Stay with default distance.

Preliminary conclusion (III)

- Hall size
 - +50% at least to fit LAr & MPT detectors
- DUNE PRISM
 - Provides alternative handle on systematics
 - Too premature to make a decision
 - Need to check, if it can be fitted without prohibitive additional cost
 - additional costs for moving detectors

Action Items

- Answer questions
- Executive summary of low level requirements (Convenors)
- Can the STT fit into and work in the KLOE Magnet (FGT)
 - What would be lost?
- Can the HPTPC fit into and work in the KLOE Magnet (HPTPC)
 - What would be lost?
- Study small 3D-Scintillator in STT (US)
- Can ArgonCube handle 2.4 MW beam (Antonio)
- Neutrons
 - Can you tag them in LAr (?)
 - Can the ECAL tag/measure them (?)
 - (Rock-neutrons?)

Next Steps

- Convenors to write workshop executive summary
- Need to home in on default option by August
 - Short document summarizing from proponents (<10 pages)
 - Key physics performance
 - R&D needs
 - Realistic Funding model
 - Addressing action items/questions
 - HPTPC, STT (& scintillator target)
- Present option to collaboration
- Next workshop at CERN
 - Probably November 6-7, 2017

